М. И. Кадец

О НЕКОТОРЫХ СВОЙСТВАХ ПОТЕНЦИАЛЬНЫХ ОПЕРАТОРОВ В РЕФЛЕКТИВНЫХ СЕПАРАБЕЛЬНЫХ ПРОСТРАНСТВАХ

Цель настоящей работы — освободиться от требования о наличии базиса в рефлективном пространстве при доказательстве теорем о градиенте слабо непрерывного функционала. Как мы увидим, использование метрических проекций вместо базиса позволяет почти дословно воспроизвести доказательства соответствующих теорем, приведенные в монографии М. М. Вайнберга ([1], § 7).

Tеорема 1. B сепарабельном банаховом пространстве можно ввести эквивалентную норму, относительно которой пространство будет строго нормированным $^{1)}$ и, кроме того, для любой

слабо сходящейся последовательности из условий

$$x_n \xrightarrow{c_n} x$$
, $||x_n|| \rightarrow ||x||$

будет следовать сильная сходимость:

$$||x_n-x||\to 0.$$

Доказательство этой теоремы приведено в [2].

Пусть теперь E— сепарабельное рефлективное пространство Банаха, норма которого удовлетворяет условиям теоремы 1. Это предположение допустимо, так как мы будем исследовать линейно-топологические, а не метрические свойства операторов. Рассмотрим замкнутое линейное подпространство $G \subseteq E$ и определим оператор P метрического проектирования на G следующим образом:

$$||x - Px|| = \min_{y \in G} ||x - y||.$$
 (1)

Существование Px обеспечивается рефлективностью, а единственность — строгой нормированностью пространства E. Оператор P— непрерывный, однородный и частично аддитивный. Последнее означает, что

$$P(x+y) = Px + y \text{ для всех } y \in G. \tag{2}$$

Элементы, аннулируемые оператором P, мы будем называть ортогональными к G.

 Π е м м а 1. Множество элементов, ортогональных к G, замкнуто и гомеоморфно фактор-пространству E/G.

Доказательство. Каждому элементу $x_0 \perp G$ сопоставим класс смежности $G_0 = x_0 + G$. Это соответствие, очевидно, взаимно одно-

$$||x+y|| < ||x|| + ||y||$$
.

¹⁾ Пространство называется строго нормированным, если для любых линейно независимых элементов x и y выполняется строгое неравенство треугольника:

значно. Оно непрерывно в одну сторону, так как из $x_n \to x_0$ следует $G_n \to G_0$. Пусть теперь $G_n \to G_0$; тогда $||G_n|| \to ||G_0||$ и значит

 $||x_n|| \to ||x_0||. \tag{3}$

Так как E рефлективно, то последовательность x_n слабо компактна и все ее предельные элементы принадлежат G_0 . Поскольку нормы всех элементов из G_0 больше, чем $\|x_0\|$, то x_0 — единственная предельная точка, т. е.

 $x_n \xrightarrow{c_n} x_0. \tag{4}$

Из (3) и (4) по теореме 1 следует, что $x_n \to x_0$. Замкнутость рассматриваемого множества следует из непрерывности оператора P.

Возьмем полную линейно независимую систему элементов сопряженного пространства

$$f_1, f_2, \dots (f_j \in E^*)$$
 (5)

и образуем в E убывающую последовательность подпространств $E \supset E_1 \supset E_2 \supset ...$,

где E_n — множество элементов, аннулируемых первыми n-функционалами последовательности (5). Множество элементов, ортогональных к E_n , обозначим E^n :

$$E^1 \subseteq E^2 \subseteq E^3 \subseteq \dots$$

Каждый элемент $\pmb{x} \in E$ может быть единственным образом представлен в виде

$$x = P^n x + P_n x$$

где P_n — оператор проектирования на E_n , а $P^n x \in E^n$; заметим, что $\|P^n x\| \leqslant \|x\|$.

 Π е м м а 2. Если последовательность x_m слабо сходится κ x, то $P^m x_m$ тоже слабо сходится κ x.

Доказательство. Последовательность разностей $x_m - P^m x_m$ слабо компактна. Так как $x_m - P^m x_m \in E_n$ ($n \le m$), а пересечение всех E_n содержит только нуль пространства, то

$$x_m - P^m x_m \stackrel{\mathrm{c}_{m}}{\longrightarrow} 0,$$

что и доказывает лемму.

Теорема 2. Для того, чтобы непрерывный оператор F, заданный в сепарабельном рефлективном пространстве Банаха, был усиленно непрерывным в шаре $D_r(\|x\| \leqslant r)$, необходимо и достаточно, чтобы каждому $\epsilon > 0$ отвечало такое натуральное $n_0(\epsilon)$, что для всякого $n > n_0$ и произвольного $x \in D_r$ имело место неравенство

$$||FP^nx - Fx|| < \varepsilon. \tag{6}$$

Доказательство необходимости. Если неравенство (6) не имеет места, то найдется последовательность $x_{n_k} \in D_r$, слабо сходящаяся к $x_0 \in D_r$ и такая, что

$$\|FP^{n_k}x_{n_k}-Fx_{n_k}\|\geqslant \varepsilon. \tag{7}$$

Но, согласно лемме 2, последовательность $P^{n_k} x_{n_k}$ также слабо сходится к x_0 и неравенство (7) противоречит усиленной непрерывности оператора F.

Доказательство достаточности. Пусть $x_m \in D_r$ слабо сходится к $x_0 \in D_r$. Фиксируем n так, чтобы для заданного $\epsilon > 0$

и любого $x \in D$, выполнялось неравенство

$$||FP^nx-Fx||<\frac{1}{4}\varepsilon;$$

тогда

$$||Fx_m - Fx_0|| \le ||Fx_m - FP^n x_m|| + ||FP^n x_m - FP^n x_0|| + ||FP^n x_0 - Fx_0|| \le \frac{\varepsilon}{2} + ||FP^n x_m - FP^n x_0||.$$

Так как оператор F непрерывен, то достаточно доказать, что последовательность $P^n x_m$ сильно сходится к $P^n x_0$. По лемме 1 последовательность $P^n x_m$ компактна как ограниченная часть множества, гомеоморфного n-мерному пространству, и каждая ее предельная точка имеет вид $P^n y$. Так как x_m слабо сходится к x_0 , то последовательность классов $\{x_m + E_n\}$ сходится сильно к классу $\{x_0 + E_n\}$, в силу конечномерности фактор-пространства E/E_n . Значит все предельные точки последовательности $P^n x_m$ принадлежат классу $\{x_0 + E_n\}$ и поэтому

$$\lim_{m\to\infty}P^nx_m=P^nx_0,$$

поскольку этот класс содержит единственную точку вида $P^n y$.

Введем теперь в пространстве E новую эквивалентную норму ($\| \ \|^{(1)}$), относительно которой сопряженное пространство E^* было бы строго нормированным. Рассмотрим последовательность подпространств пространства E^* :

$$E_{1}^{**} \subset E_{2}^{*} \subset E_{3}^{*} \subset ...,$$

где E_n^* — линейная оболочка первых n членов последовательности (5). Для каждого E_n^* определим относительно нормы $\|\cdot\|^{(1)}$ оператор метрического проектирования \tilde{P}_n . Каждый элемент $f \in E^*$ представляется единственным образом в виде

$$f = \tilde{P}_n f + \tilde{P}^n f$$

где $\widetilde{P}^n f$ ортогонален к E_n^* , а $\widetilde{P}_n f \in E_n^*$. Теорема 3. Пусть выполнены условия: 1. Функционал F(x) непрерывен в E и слабо непрерывен в D_{r+a} при некотором $\alpha > 0$.

2. dF(x, h) является равномерным в D_r . Тогда $\Gamma x = \operatorname{grad} F(x)$

компактен в шаре Dr.

Доказательство. Пусть h — произвольный элемент из E_n единичной нормой, $x \in D_r$; тогда

$$F(x+th) - F(x) = t(\Gamma x, h) + \omega(x; th), \tag{8}$$

при любом действительном t. Так как $_{\mathbf{x}}^{\mathbf{x}}h \in E_{n}$, то $(\hat{P}^{n}\Gamma x, h) = 0$ и поэтому

$$(\Gamma x, h) = (P_n \Gamma x, h).$$

Так как $\widetilde{P}_x \Gamma_x$ ортогонален E_n^* по норме $\| \|^{(1)}$, то в E_n можно найти нормированный элемент h_0 такой, что

$$(\widehat{P}_n\Gamma x, h_0) = \|\widehat{P}_n\Gamma x\|^{(1)} \geqslant \gamma \|\widehat{P}_n\Gamma x\|.$$

Последнее неравенство следует из эквивалентности рассматриваемых норм. Подставим h_0 в (8) и определим $\|\widetilde{\boldsymbol{\mathcal{P}}}_n \Gamma \boldsymbol{x}\|$:

$$\gamma t \cdot \|\widehat{P}_n \Gamma x\| \leqslant |F(x + th_0) - F(x) - \omega(x; th_0)|. \tag{9}$$

Из частичной аддитивности оператора P_n следует $P^{n}(x+th_{0}) = x + th_{0} - P_{n}(x+th_{0}) = x - P_{n}x = P^{n}x.$

Поэтому (9) можно переписать в виде

$$\gamma t \|\widehat{P}_n \Gamma x\| \leq |F(x + th_0) - FP^n(x + th_0)| + |FP^n(x) - F(x)| + |\omega(x; th_0)|. \tag{10}$$

Выберем t настолько малым, чтобы удовлетворить неравенствам:

$$t < \alpha; \quad |\omega(x, th_0)| < \frac{\varepsilon}{3} \gamma t.$$
 (11)

Затем подберем n_0 такое, чтобы для всех $n > n_0$ было

$$|F(x+th_0)-FP^n(x+th_0)| < \frac{\varepsilon}{3} \gamma t; |FP^n(x)-F(x)| < \frac{\varepsilon}{3} \gamma t. \quad (12)$$

Из (10), (11), (12) получаем

$$||P_n\Gamma x|| < \varepsilon. \tag{13}$$

Так как оператор Γ ограничен, то условие (13) достаточно для компактности оператора Γ в D_r . Соответствующий критерий компактности доказан в [3].

Аналогично доказывается, что и другие теоремы из ([1], § 7) сохраняются при отказе от требования о наличии базиса.

Харьковский автомобильно-дорожный институт

Поступило 26 I 1959

ЛИТЕРАТУРА

М. М. Вайнберг. Вариационные методы исследования нелинейных операторов

ГИТТЛ, М., 1956. М. И. Кадец. О слабой и сильной сходимости. ДАН СССР, т. 122, № 1, 1958. М. И. Кадец. О гомеоморфизме некоторых пространств Банаха. ДАН СССР, т. 92, № 3, 1953.