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In this paper we obtain estimates which are order-exact for the projection and Macphail
constants of an arbitrary n-dimensional Banach space: 1 =AX} = vn, 1/n = pylX) =

1/Vn.

The collection of all n-dimensional Banach spaces can be metrized with the aid of the Banach-Mazur
distance (see [1], p. 216):

PG Y)=Ind(X; ¥), d(X;Y)=int|T]|T7 1)

where T passes over all isomorphisms of X onto Y. In this way we obtain a compact metric space. We

will refer to it as a compact Minkovskii space and denote it by My.

Let Z be any Banach space, and X a subspace of it. We will define the relative projection constant

M(X; Z) = inf}| P,

where P passes through all projections of Z onto X. We now define the (absolute) projection constant {2}:
MX) = suph(X; Z), (2)

where Z passes through every Banach space containing X as a subspace. The upper bound in (2} is attained

if in the capacity of Z we substitute C(Q), the space of all continuous functions defined on some compact
set Q

AMX) =4(X C@O) X C(@©) (3)
The Macphail constant is defined as:

p{X)= inf sup ﬁzﬁﬂi

{xi} ag=+1

) (4

where the lower bound is taken over all finite subsets ixif & X, satisfying the condition
2lup=1 (=1

The projection constant has bound application in the estimation of compact spaces of large dimen~
sion in Banach spaces, and in the theory of completely continuous operators (see [3], p. 206208 where
essential use is made of the estimate A(X) = n). The constant ;J-p(X) has arisen in connection with studies
of unconditionally convergent series.

The constant has been calculated for certain spaces. For example,
(Zk—i)r(k—i)

n, 2
M) = VarT (k)
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nl Tn‘ =5
%<lé"’>~—*(i)——~~ 14, 121, 15,

MID) =1, MX)>1(X 1) (see [6], p. 160),
i (1) = A 0%), o (87 =2 (57) 51

In this note we will prove the additional inequalities

1<MX)<Vn, -<pl(X)< V_ (X = Mm,). (5)
Previously, the more inexact estimates
A () A )
]/n 7 Vn

were known.

Upper Estimate for A(X). Let U* be the unit sphere of the adjoint space X*. In the space C(U *) we
will examine the subspace L(U*) of all linear homogeneous functions. Each such function is given by the
formula

Ff) =i ) [ FIl = |yl (f = U*, 2, = X),

which allows the identification of L(U *) with X. In agreement with (3) the norm of any projection operator,
transforming C{U*) into X, is an upper bound on A(x). Thus, the problem reduces to that of selecting the
projection operator well,

We will make use of a proposition due to F. John {7]. In a somewhat modified form it states the
following:

LEMMA, For any X€ M, there exists a linear operator T: X — l( n) having the following properties:
fT-1 = 1; there exists a sequence of elements {yrfs c l(n and a sequence {}\r}s (n =s = n(n+1/2) such
that flyell = I Tl = IT*yp} = 1. For anyu, v Elé 1) we find the identity

8

Dy M W ) (g, 0) = (w3 0), ®)
from which we conclude in particular, that >\, = n.
We will define the required projector by means of the formula
PF=3_MF(Ty) Ty,  (FECU). @

It is easily shown that this transformation does indeed map C(U*) onto L(U *) = X. We will show that the
operator P leaves each element of X invariant. Let us choose a function Fy(f) = (f; %) € L(U*) and apply
the operator P to it:

8 ]
PFy= 2\ eIy 20) T = 2 e (4 Tmo) Tl
Applying to PF, any linear functional ¢ ¢ X*, and using the relation (6):
8 B
(PFo; @) = Dy M (s T2o) (T35 @) = Dy Me (s T) (s 1779) = (Tg5 T*79) = (20, 9) = Fo (9),

i.e., PF = F for every F € L(U¥*). Thus, the operator P is indeed a projection operator from C(U *) onto
X. We can estimate the norm of the projector P:

1Pl= sup sup| S 0.F (T°5,) (T, ).
1FHISL A< <1
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Since [[T*yypll = 1, we can set F(T *yy) = sign (T~lyp; f);

1Pl =sub S0 [ (71 N1 = sup S| (wes 77N I<swp ) Bk, Y/ B (s 7497
In agreement with (6)
=IP|<Vrsup| T =VR[ T = Vn.

Thus, MX) = vn for every X €My. As shown by the example of lén), this estimate is close to ideal.

Upper Estimate for 14(X). As proved in [8], the constants A(X) and py(X) are related by means of the
relation

ny (X) <M (X),

b

from which we immediately see that py(X) =n~1/2,

Lower Estimate for p(X). For any given &£ > 0 we will find a set {xi}}n < X, for which

max | Yoz,
Xyt 0, 8)
Hl( ) 7"-"51" € (

We will represent the vector xj with respect to the basis of Auerbach (see [1], p. 213):

n

=D e max|ay|<|n|<Y e (1<i<m).
7

A lower estimate is calculated in the right hand side of (8), for the numerator:
max n Zi“i Z]. a;¢; ” max maxfzi ociai]-' == max Ei [ai;].
‘1,:=’L_~_1 ai=i1 i J

An upper estimate for the denominator is given by:

Sl = D S e <52 as.

Thus

mex Y, Loy
31,

yj?i,“u‘f
-1

By virtue of the arbitrariness of £ we obtain g;(X) Zn~!, This estimate is exact since ul(lg‘)) =n

1
b (X) > —e> e,
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