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Let X and Y be Banach spaces and assume that a continuous (not necessarily linear) in- 
jective operator A acts from X into Y. A sequence of continuous operators Rn: Y + X is said 
to be regularizing (with respect to A -I) if for each x ~ X we have the limit equality 

lim R n A x  = x. (1 )  

From t h e  d e f i n i t i o n  o f  a r e g u l a r i z i n g  s e q u e n c e  ( i n  t h e  s e q u e l  we s h a l l  c a l l  i t  a r e g u l a r i z e r )  
there follows directly the following inclusion: the domain M(R n) = {y~ Y: ~limR~y} of the 
convergence of the regularizer contains AX. According to Domanskii's definition [i], a regu- 
larizer is said to be resolving if M(R n) = AX. The meaning of the terminology is: the con- 
vergence of the sequence RnY to the element x is equivalent to the solvability of the equa- 
tion Ax = y. 

THEOREM i. Assume that the operator A: X + Y admits a regularizer (Rn)l =. If there 
exists a continuous injection V: Y + X, V(0) = 0, then there exists also a resolving regu-_ 
larizer, which will be denoted by (Rn)1 ~. Moreover, if V, A, and R n are linear, then also R n 
are linear, If, furthermore, the R n are finite-dimensional, then also R n are finite-dimen- 
sional. 

Proof. In the first two cases the resolving regularizer is uniquely constructed: 

~ . _ , = R . ,  ~ 2 . = R . + V ( A R . - I ) ,  n = i ,  2, . . . .  (2 )  

Here I is the identity operator. First we show that (Rn) ~ - = _ i is a regularizer. Since R2n_ I 
R n, we have limR2n_iAx = x. Further, R2nAx = RnAx + V(ArnAx - Ax). In view of the continu- 
ity of the operators V and A, we have 

lim V ( A R = A x - -  A@ = V (A  lim R n A x  - -  A@ = O. 

Thus, limRnhx = x. We show that (Rn)1 ~ is a resolving regularizer. Let RnY ~ x. By virtue 
of the first of the equalities (2), we have RnY + x. The second equality (2) leads to limV. 
(ArnY- y) = 0; but, on the other hand, 

lira V (AR~y  - -  y) = V (A lim R~y - -  y) = V (Ax  - -  y). 

By virtue of the injectivity of the operator V we have y = Ax, proving the fact that the regu- 
larizer (Rn)1 = is resolving. Now we consider the third case: V, A, R n are linear operators, 
while the R n are also finite-dimensional. In this case a finite-dimensional resolving regu- 
larizer is constructed in the following manner: 

R ~ . _ ~ = R ~ ,  R ~ = R ~ + R ~ A V ( A R ~ - I ) ,  n = i ,  2, . . . .  (3 )  

We show that (Rn)1 ~ is a regularizer. As in the previous two cases, R2n_iAx = Rnhx + x. 
From the second of the equalities (3) we obtain 

IIRz,~Ax -- TUAxl[ <~ IIR,~A II II VIIIIA llllR,~Ax - xll. 

Since by the Banach-Steinhaus theorem the numbers lIRnAll are bounded in their totality, it 
follows that the right-hand side of the last inequality tends to zero when n § ~. Thus, 
limRnAx = x. We consider the solvability. Let RnY + x. Then also RnY + x, while 

lim~=~y = l i m R . y  + l i m ( R ~ A ) V A ( R . y  -- x ) +  

+ Iim (R~A) V ( A x  -- y)  = x + 0 + V ( A x  -- y ) .  
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Thus, by virtue of the injectivity of the operator V, we have y = Ax. 

We elucidate how important is the requirement of the existence of the injection V + X. 
We restrict ourselves to the consideration of a separable infinite-dimensional space X. In 
the nonlinear case the existence of an injection is guaranteed by the following condition: 
the dimension (the minimal cardinality of a dense subset) of the space Y does not exceed the 
cardinality of the continuum. This condition can be easily obtained on the basis of Torunczyk's 
theorem [2] on the homeomorphism of all (nonseparable) Banach spaces of a given dimension. 
The existence of a linear injection is equivalent to the existence in Y of a countably total 
set of linear functionals (in other words, to the weak* separability of the conjugate space 
Y*). We note that, according to [3], the existence of a resolving linear regularizer (in the 
case of a separable X) implies the weak* separability of Y*, i.e. in this case the existence 
of a linear injection is not only a sufficient but also a necessary condition for the exis- 
tence of a resolving regularizer. We also note that if Y* is weak* separable and the linear 
operator A: X + Y admits a linear regularizer (Rn)1 =, then a resolving regularizer can be 
defined by the following formulas: 

h = l  

w h e r e  ( X k ) l  ~ i s  a m i n i m a l  s e q u e n c e  i n  X, ( g k ) l  ~ i s  a c o u n t a b l e  t o t a l  s u b s e t  o f  Y*, a n d  ( X k ) l  ~ 
is a sequence of positive coefficients, converging sufficiently fast to zero. 

The concept of a resolving regularizer has a deficiency: a subsequence of a resolving 
regularizer need not be a resolving regularizer. In connection with this we introduce the 
following definition, also due to Domanskii. A sequence (Rn)1 ~ is said to be a strictly re- 
solving regularizer if each of its subsequences is a resolving regularizer. 

Now we consider the elucidation ofthe following question: under what conditions on A, 
X, and Y does there exist a strictly resolving regularizer? 

We need some facts from the theory of Banach spaces. A sequence (Xn)1 ~ of elements of 
a space X is said to be minimal if it admits a conjugate system (fn)1 ~ (i,e., such that 
fi(xj) = 6ij, i, j = I, 2, ...). The subspace spanned by the elements (xi)1 n will be denoted 

by X n. To each element x ~ X one associates the (in general, divergent) series ~/n(x) xn. 
I 

Its partial sums are denoted by Snx, so that S n is a linear continuous operator, acting from 
X into X n. We say that the system (x i, fi)1 ~ is a normalizing M-basis ("M" from Markushe- 
rich) if (Xn)! ~ is a complete set in X and the linear hull of the set (fn)1 ~ is a normalizing 
subspace in X*. A sequence F c X* is said to be normalizing if sup {f(x): f ~ F, llfU ~ i} 
7HxH for some y > 0 and for all x ~ X. In [4], it is proved that each normalizing M-basis 
has the following "restoring" property relative to the biorthogonal expansions x ~ Efn(X)Xn: 
there exists a sequence of continuous (in general, nonlinear) operators Tn: X n ~ X such that 
for all x~ X one has 

l im  T n S n X  ~ x ,  

w h i l e  f o r  e a c h  c o l l e c t i o n  o f  n u m e r i c a l  c o e f f i c i e n t s  ( a i ) z  ~ one has 

(4) 

/j~ T n  = aj ,  ] = 1, 2 . . . . .  n.  

This property of normalizing M-bases will be used for the proof of Theorem 2. We also note 
that, according to [5], a linear injective operator A, acting from a separable space X into 
an arbitrary space Y, admits a regularizer (not necessarily linear) if and only if Amy * is 
a normalizing subspace in X. 

LEMMA. Let X be separable and infinite-dimensional, let Y* be weak * separable, let 
A: X + Y be a linear injective operator, and assume that A'X* is a normalizing subspace in 
X*. Then in X there exists a normalizing M-basis (xi, fi)1 ~ such that fi = A*gi and (gi)1 ~ 
is a total set of linear functionals over Y. 
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Proof. We select in Y* a total sequence (hi)l ~, lying outside kerA*. We complete it 

by elements (bi)l~ c Y*\kerA* so that the set (hn)1 ~ U (bn)1 ~ remains total and the linear 
hull of the set (A*hn)1 = D (A*bn)1 ~ is a normalizing subspace of Y*. This can be done on 
the basis of the conditions of the lenmla. Now, according to [6, p. 224, Theorem 8.1], we 
can form an M-basis (xi, fi)1 ~ such that fi = A*gi, the linear hull Lin (gi)l = coincides with 
Lin{(hi)l ~ U (bi)l ~} and, consequently, lin(A*gi)l ~ is a normalizing set. 

THEOREM 2. If X is infinite-dimensional and separable, Y* is weak * separable, while 
the linear injection A: X + Y admits a regularizer, then A admits also a strictly resolving 
regularizer. 

Proof. According to the above given facts, in X there exist a normalizing M-basis (xi, 
fi)z ~ and a sequence of continuous operators T n = Xn + X, satisfying conditions (4) and (5) 
and, moreover, fi = A(hi and (gi)1 = is total. We define the desired resolving regularizer 
in the following manner: 

Hny = Tn "= gi (y) x~ , y ~ Y, 

We verify that (Rn)1 | is a regularizer. Indeed, 

R~Ax = r ~  g~ (Az)  xi  = T~ ~ (x) zl 

Assume  now t h a t  RnY + x f o r  n + ~ .  A c c o r d i n g  t o  ( 5 )  we h a v e  

n = i ,  2, . . . .  ( 6 )  

" - ~  X .  

On the other hand, 

l i ra  ~ (Bny) = / j  (x) = gj (Ax),, ] = l ,  2 . . . . .  

C o m p a r i n g  t h e  l a s t  two e q u a l i t i e s ,  b y  v i r t u e  o f  t h e  f a c t  t h a t  t h e  s e t  ( g j ) l  ~ i s  t o t a l ,  we 
o b t a i n  t h a t  y = Ax. T h u s ,  ( R n ) i  ~ i s  a r e s o l v i n g  r e g u l a r i z e r .  The  r e a s o n i n g  r e m a i n s  v a l i d  
i f  we r e s t r i c t  o u r s e l v e s  t o  t h e  c o n s i d e r a t i o n  o f  a n y  s u b s e q u e n c e  o f  i n d i c e s  ( n k ) l  ~ T h u s ,  
(Rn)1 ~ is a strictly resolving regularizer. 

Finally, we proceed to the consideration of finite-dimensional linear regularizers. 

THEOREM 3. Let X be separable and infinite-dimensional, let Y* be weak * separable, 
and let A: X + Y be a linear injection, admitting a regularizer (Rn)1 ~, composed of finite- 
dimensional linear operators. Then A admits also a strictly resolving finite-dimensional 
linear regularizer. 

Proof. We define the desired regularizer by the formula 

TI~y = R . y  + ~ ~.kg h (AR,~y - -  y) e,~+~, n --- t ,  2 . . . . .  ( 7 ) 
4 = 1  

where (gk)1 ~ is a normalized total sequence of linear functionals from Y*, (en)1 ~ is a norm- 
alized sequence selected in a special manner from X, (~n)1 ~ is a positive numerical sequence, 
guaranteeing the inequality 

t Z </lyll k=l ~hg~ (Y) ~ r  all Y ~ y .  ( 8 ) 

We s e l e c t  t h e  s e q u e n c e  ( e n ) t  ~ i n  t h e  f o l l o w i n g  m a n n e r .  We f i x  ~ ,  0 < e < 1.  On t h e  u n i t  
s p h e r e  o f  t h e  f i n i t e - d i m e n s i o n a l  s u b s p a c e  R1Y c X we s e l e c t  a f i n i t e  e - n e t  a n d  f o r  e a c h  e l e -  
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ment of this s-net we select a supporting linear functional [we recall that a normalized 
linear functional f X* is said to be supporting with respect to the element x ~ X if 
f(x) = lixll]. The intersection of the kernels of these functionals is a subspace of finite 
codimension X I c X which is "g-orthogonal" to RIY in the sense that for all x ~ RIY and z 
X l we have llx + ziI e (i - g)llxll. As el we select any normalized element from X I. We con- 
sider the linear span of the subspaces RIY, R2Y and the element el; on the unit sphere of 
the finite-dimensional subspace Lin (RIY, R2Y, e I) we select a finite e-net, including in 
it also the ~-net selected at the preceding step; for each element of the e-net we select 
a supporting functional. The intersection of the kernels of these functionals is a subspace 
X 2 c X I c X of finite codimension, which is e-orthogonal to the subspace Lin (RIY , R2Y, el). 
For e 2 we select an arbitrary normalized element of X 2. We continue this process indefinite- 
ly and we obtain the required sequence (en)1 ~. We mention those of its properties that are 
needed: for each x RnY and each finite collection of coefficients (ci)1N we have 

Z 

for each collection of coefficients (ai)1 n we have 

n = t ,  2 . . . . .  

We verify that the sequence defined by formula (7) is a regularizer. 
(7) and (8), we have 

(9) 

(Io) 

According to relations 

Since limRnAx = x, we also have lim RnAx = x. Now we prove that (Rn)1 ~ is a strictly resolving 
regularizer. Assume that n runs through some subsequence of the natural series and let 
limR~y =x. If we denote y - Ax = u, then Rn u + 0. In view of the inequality (9) we have 

HRnu[{ ~ (i - E)I[RnU[[, so that Rnu + 0 for the same sequence of indices. Thus, also, the last 
term in equality (7) tends to zero: 

l i ra  ~ u) e~+k n k = l  X~gk  ( A R ~ u  - -  = O. 

According to (i0), for any natural number m we have 

l i ra  I ~ g , . ( A R . u  - u)]  = O, 

from where gm(U) = 0 for all m. Consequently, by virtue of the fact that the set (gn)! ~ is 
total, we have u = 0, i.e., y = Ax. 

We note that, under the assumptions of Theorems I or 3, the existence of a linear finite- 
dimensional resolving regularizer has been established also in [7]. 

At the consideration of the question of the regularizability of an operator A: X + Y 
there arise three different problems: on the existence of i) a regularizer, 2) a linear regu- 
larizer, and 3) a linear finite-dimensional regularizer. As one can see from Theorem i, in 
the case of a separable space X, all three problems (under the natural assumption of the weak 
separability of the space Y*) are equivalent to the analogous problems for the resolving regu- 
larizer. Theorems 2 and 3 show that for strictly resolving regularizers (if X is separable) 
the first and third problems can be solved in the case when they can be solved for resolving 
regularizers. The question regarding the second problem remains open: 

Question. Assume that it is known that the operator A, acting from a separable space 
X, admits a linear resolving regularizer. Does A admit a strictly resolving regularizer? 
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THERE IS NO LOCAL UNCONDITIONAL STRUCTURE IN 

ANISOTROPIC SPACES OF SMOOTH FUNCTIONS 

S. V. Kislyakov and N. G. Sidorenko UDC 513.881 

INTRODUCTION 

For every finite subset A of an integer lattice Z%(= (Z+) n) there corresponds a Banach 
space cA(T ") consisting of all the continuous functions f on the torus T n whose derivatives 
(in the sense of the theory of generalized functions) corresponding to the multiindices from 
A are also continuous functions. The norm in cA(T') is specified by the equation 

li l llc~ = II/ll~ + E II O=lll~, 
a ~ A  

where U II~ is the standard supremum norm, Da=O~i...O~ ~ for a = (~i ..... ~n) and (Sjf) 

( Z I ,  ~ \ def ~ , , �9 e{ O ..... ~nj~'~l(Zl .... Zj-1, Zj+l,...,Zn) lO=tj, whenever zj = eitj 

When A= {a=(=1,..:, an)~Z~: la] = al + ... + =~ll the space cA(T ~) is nothing else but 
the standard space C(s ~) of all s continuously differentiable functions. For n = I 
this space is isomorphic to the space C(T) for any s (i.e., linearly homeomorphic). (Indeed, 
the operator ~i s maps C(s linearly onto C(T) and its kernel contains only constants.) 
For n e 2 the situation substantially differs. 

Grothendieck [i] was first to announce that for n e 2 and s ~ i the space C(s ~) is 
not isomorhic to the direct factor of C(K) for any compact K. The first proof of this fact 
was given by Khenkin [2]. Later Kislyakov [3] showed that for such n and s the space 
C(s ") is not isomorphic to any quotient space of the space C(K). Then Kislyakov [@] ~nd 
Kwapien and Pelczynski [5] proved, by use of different techniques, that the space C(s ) 
with n ~ 2 and s �9 i has no local unconditional structure. Roughly speaking, this latter 
fact means that "typical" finite-dimensional subspaces of C(s ~) are "far away" from the 
subspaces of a space with a 1-unconditional basis admitting "small norm" projection. Follow- 
ing [6], we now give a definition of the local unconditional structure. 

A Banach space X is said to have a local unconditional structure if there exists a con- 
stant C > 0 such that for any finite-dimensional subspace F in X there are a Banach space E 
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