RESOLVING AND STRICTLY RESOLVING REGULARIZERS

V. M. Kadets, M. I. Kadets, and V. P. Fonf

Let X and Y be Banach spaces and assume that a continuous (not necessarily linear) injective operator A acts from X into Y. A sequence of continuous operators $R_n: Y \rightarrow X$ is said to be regularizing (with respect to A^{-1}) if for each $x \in X$ we have the limit equality

$$\lim_{n \to \infty} R_n A x = x. \tag{1}$$

From the definition of a regularizing sequence (in the sequel we shall call it a regularizer) there follows directly the following inclusion: the domain $M(R_n) = \{y \in Y: \exists \lim R_n y\}$ of the convergence of the regularizer contains AX. According to Domanskii's definition [1], a regularizer is said to be resolving if $M(R_n) = AX$. The meaning of the terminology is: the convergence of the sequence $R_n y$ to the element x is equivalent to the solvability of the equation Ax = y.

<u>THEOREM 1.</u> Assume that the operator A: $X \rightarrow Y$ admits a regularizer $(\bar{R}_n)_1^{\infty}$. If there exists a continuous injection V: $Y \rightarrow X$, V(0) = 0, then there exists also a resolving regularizer, which will be denoted by $(\bar{R}_n)_1^{\infty}$. Moreover, if V, A, and R_n are linear, then also \bar{R}_n are linear. If, furthermore, the R_n are finite-dimensional, then also \bar{R}_n are finite-dimensional.

<u>Proof.</u> In the first two cases the resolving regularizer is uniquely constructed:

$$\overline{R}_{2n-1} = R_n, \quad \overline{R}_{2n} = R_n + V(AR_n - I), \quad n = 1, 2, \dots$$
(2)

Here I is the identity operator. First we show that $(\bar{R}_n)_1^{\infty}$ is a regularizer. Since $\bar{R}_{2n-1} = R_n$, we have $\lim \bar{R}_{2n-1}Ax = x$. Further, $\bar{R}_{2n}Ax = R_nAx + V(Ar_nAx - Ax)$. In view of the continuity of the operators V and A, we have

$$\lim_{n\to\infty} V \left(AR_nAx - Ax\right) = V \left(A \lim R_nAx - Ax\right) = 0.$$

Thus, $\lim \bar{R}_n Ax = x$. We show that $(\bar{R}_n)_1^{\infty}$ is a resolving regularizer. Let $\bar{R}_n y \to x$. By virtue of the first of the equalities (2), we have $R_n y \to x$. The second equality (2) leads to $\lim V \cdot (Ar_n y - y) = 0$; but, on the other hand,

$$\lim_{n\to\infty} V(AR_ny-y) = V(A\lim R_ny-y) = V(Ax-y).$$

By virtue of the injectivity of the operator V we have y = Ax, proving the fact that the regularizer $(\bar{R}_n)_1^{\infty}$ is resolving. Now we consider the third case: V, A, R_n are linear operators, while the R_n are also finite-dimensional. In this case a finite-dimensional resolving regularizer is constructed in the following manner:

$$\overline{R}_{2n-1} = R_n, \quad \overline{R}_{2n} = R_n + R_n A V (A R_n - I), \quad n = 1, 2, \dots$$
(3)

We show that $(\bar{R}_n)_1^{\infty}$ is a regularizer. As in the previous two cases, $\bar{R}_{2n-1}Ax = R_nAx \rightarrow x$. From the second of the equalities (3) we obtain

$$\|\overline{R}_{2n}Ax - R_nAx\| \leq \|R_nA\| \|V\| \|A\| \|R_nAx - x\|.$$

Since by the Banach-Steinhaus theorem the numbers $||R_nA||$ are bounded in their totality, it follows that the right-hand side of the last inequality tends to zero when $n \to \infty$. Thus, $\lim R_nAx = x$. We consider the solvability. Let $R_ny \to x$. Then also $R_ny \to x$, while

$$\lim \overline{R}_{2n}y = \lim R_n y + \lim (R_n A) VA (R_n y - x) + \\ + \lim (R_n A) V (Ax - y) = x + 0 + V (Ax - y).$$

Kharkov. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 29, No. 3, pp. 59-63, May-June, 1988. Original article submitted June 17, 1986.

380 🕚

UDC 517.98

Thus, by virtue of the injectivity of the operator V, we have y = Ax.

We elucidate how important is the requirement of the existence of the injection $V \rightarrow X$. We restrict ourselves to the consideration of a separable infinite-dimensional space X. In the nonlinear case the existence of an injection is guaranteed by the following condition: the dimension (the minimal cardinality of a dense subset) of the space Y does not exceed the cardinality of the continuum. This condition can be easily obtained on the basis of Torunczyk's theorem [2] on the homeomorphism of all (nonseparable) Banach spaces of a given dimension. The existence of a linear injection is equivalent to the existence in Y of a countably total set of linear functionals (in other words, to the weak' separability of the conjugate space Y^{*}). We note that, according to [3], the existence of a resolving linear regularizer (in the case of a separable X) implies the weak' separability of Y^{*}, i.e. in this case the existence of a linear injection is not only a sufficient but also a necessary condition for the existence of a resolving regularizer. We also note that if Y^{*} is weak' separable and the linear operator A: X \rightarrow Y admits a linear regularizer (R_n)₁[∞], then a resolving regularizer can be defined by the following formulas:

$$\overline{R}_{2n-1}y = R_n y, \quad \overline{R}_{2n}y = R_n y + \sum_{k=1}^n \lambda_k g_k (AR_n y - y) x_k,$$

where $(x_k)_1^{\infty}$ is a minimal sequence in X, $(g_k)_1^{\infty}$ is a countable total subset of Y*, and $(\lambda_k)_1^{\infty}$ is a sequence of positive coefficients, converging sufficiently fast to zero.

The concept of a resolving regularizer has a deficiency: a subsequence of a resolving regularizer need not be a resolving regularizer. In connection with this we introduce the following definition, also due to Domanskii. A sequence $(R_n)_1^{\infty}$ is said to be a strictly resolving regularizer if each of its subsequences is a resolving regularizer.

Now we consider the elucidation of the following question: under what conditions on A, X, and Y does there exist a strictly resolving regularizer?

We need some facts from the theory of Banach spaces. A sequence $(x_n)_1^{\infty}$ of elements of a space X is said to be minimal if it admits a conjugate system $(f_n)_1^{\infty}$ (i.e., such that $f_i(x_j) = \delta_{ij}$, i, j = 1, 2, ...). The subspace spanned by the elements $(x_i)_1^n$ will be denoted

by X_n. To each element $x \in X$ one associates the (in general, divergent) series $\sum_{i} f_n(x) x_n$.

Its partial sums are denoted by $S_n x$, so that S_n is a linear continuous operator, acting from X into X_n . We say that the system $(x_i, f_i)_1^{\infty}$ is a normalizing M-basis ("M" from Markushe-vich) if $(x_n)_1^{\infty}$ is a complete set in X and the linear hull of the set $(f_n)_1^{\infty}$ is a normalizing subspace in X*. A sequence $\Gamma \subset X^*$ is said to be normalizing if $\sup\{f(x): f \in \Gamma, \|f\| \le 1\} \ge \gamma \|x\|$ for some $\gamma > 0$ and for all $x \in X$. In [4], it is proved that each normalizing M-basis has the following "restoring" property relative to the biorthogonal expansions $x \sim \Sigma f_n(x)x_n$: there exists a sequence of continuous (in general, nonlinear) operators $T_n: X_n \to X$ such that for all $x \in X$ one has

$$\lim_{n \to \infty} T_n S_n x = x, \tag{4}$$

while for each collection of numerical coefficients $(a_i)_1^{\infty}$ one has

$$f_{j'}\left(T_n\left(\sum_{i=1}^n a_i x_i\right)\right) = a_j, \quad j = 1, 2, \ldots, n.$$
(5)

This property of normalizing M-bases will be used for the proof of Theorem 2. We also note that, according to [5], a linear injective operator A, acting from a separable space X into an arbitrary space Y, admits a regularizer (not necessarily linear) if and only if A*Y* is a normalizing subspace in X.

LEMMA. Let X be separable and infinite-dimensional, let Y* be weak * separable, let A: $X \rightarrow Y$ be a linear injective operator, and assume that A*X* is a normalizing subspace in X*. Then in X there exists a normalizing M-basis $(x_i, f_i)_1^{\infty}$ such that $f_i = A*g_i$ and $(g_i)_1^{\infty}$ is a total set of linear functionals over Y.

<u>Proof</u>. We select in Y* a total sequence $(h_i)_1^{\infty}$, lying outside ker A*. We complete it by elements $(b_i)_1^{\infty} \subset Y^* \setminus \ker A^*$ so that the set $(h_n)_1^{\infty} \cup (b_n)_1^{\infty}$ remains total and the linear hull of the set $(A^*h_n)_1^{\infty} \cup (A^*b_n)_1^{\infty}$ is a normalizing subspace of Y*. This can be done on the basis of the conditions of the lemma. Now, according to [6, p. 224, Theorem 8.1], we can form an M-basis $(x_i, f_i)_1^{\infty}$ such that $f_i = A^*g_i$, the linear hull Lin $(g_i)_1^{\infty}$ coincides with Lin $\{(h_i)_1^{\infty} \cup (b_i)_1^{\infty}\}$ and, consequently, lin $(A^*g_i)_1^{\infty}$ is a normalizing set.

<u>THEOREM 2.</u> If X is infinite-dimensional and separable, Y* is weak * separable, while the linear injection A: $X \rightarrow Y$ admits a regularizer, then A admits also a strictly resolving regularizer.

<u>Proof.</u> According to the above given facts, in X there exist a normalizing M-basis $(x_i, f_i)_1^{\infty}$ and a sequence of continuous operators $T_n = X_n \rightarrow X$, satisfying conditions (4) and (5) and, moreover, $f_i = A(h_i \text{ and } (g_i)_1^{\infty} \text{ is total.} We define the desired resolving regularizer in the following manner:$

$$R_{n}y = T_{n}\left(\sum_{i=1}^{n} g_{i}(y) x_{i}\right), \quad y \in Y, \quad n = 1, 2, \dots$$
(6)

We verify that $(R_n)_1^{\infty}$ is a regularizer. Indeed,

$$R_n A x = T_n \left(\sum_{i=1}^n g_i(Ax) x_i \right) = T_n \left(\sum_{i=1}^n f_i(x) x_i \right) \rightarrow x.$$

Assume now that $R_n y \rightarrow x$ for $n \rightarrow \infty$. According to (5) we have

$$f_j(R_n y) = f_j\left(\sum_{i=1}^n g_i(y) x_i\right) = g_j(y), \quad 1 \leq j \leq n.$$

On the other hand,

$$\lim_{n\to\infty}f_j(R_ny)=f_j(x)=g_j(Ax), \quad j=1, 2, \ldots$$

Comparing the last two equalities, by virtue of the fact that the set $(g_j)_1^{\infty}$ is total, we obtain that y = Ax. Thus, $(R_n)_1^{\infty}$ is a resolving regularizer. The reasoning remains valid if we restrict ourselves to the consideration of any subsequence of indices $(n_k)_1^{\infty}$. Thus, $(R_n)_1^{\infty}$ is a strictly resolving regularizer.

Finally, we proceed to the consideration of finite-dimensional linear regularizers.

<u>THEOREM 3.</u> Let X be separable and infinite-dimensional, let Y* be weak * separable, and let A: $X \rightarrow Y$ be a linear injection, admitting a regularizer $(R_n)_1^{\infty}$, composed of finitedimensional linear operators. Then A admits also a strictly resolving finite-dimensional linear regularizer.

Proof. We define the desired regularizer by the formula

$$\overline{R}_{n}y = R_{n}y + \sum_{k=1}^{n} \lambda_{k}g_{k}(AR_{n}y - y)e_{n+k}, \quad n = 1, 2, \dots,$$
(7)

where $(g_k)_1^{\infty}$ is a normalized total sequence of linear functionals from Y*, $(e_n)_1^{\infty}$ is a normalized sequence selected in a special manner from X, $(\lambda_n)_1^{\infty}$ is a positive numerical sequence, guaranteeing the inequality

$$\left\|\sum_{k=1}^{n} \lambda_k g_k(y) e_{n+k}\right\| \leq \|y\| \text{ for all } y \in Y.$$
(8)

We select the sequence $(e_n)_1^{\infty}$ in the following manner. We fix ϵ , $0 < \epsilon < 1$. On the unit sphere of the finite-dimensional subspace $R_1Y \subset X$ we select a finite ϵ -net and for each ele-

ment of this ε -net we select a supporting linear functional [we recall that a normalized linear functional f X* is said to be supporting with respect to the element $x \in X$ if f(x) = ||x||]. The intersection of the kernels of these functionals is a subspace of finite codimension $X^1 \subset X$ which is " ε -orthogonal" to R_1Y in the sense that for all $x \in R_1Y$ and $z \in X^1$ we have $||x + z|| \ge (1 - \varepsilon)||x||$. As e_1 we select any normalized element from X^1 . We consider the linear span of the subspaces R_1Y , R_2Y and the element e_1 ; on the unit sphere of the finite-dimensional subspace Lin (R_1Y , R_2Y , e_1) we select a finite ε -net, including in it also the ε -net selected at the preceding step; for each element of the ε -net we select a supporting functional. The intersection of the kernels of the subspace Lin (R_1Y , R_2Y , e_1). For e_2 we select an arbitrary normalized element of X^2 . We continue this process indefinitely and we obtain the required sequence $(e_n)_1^{\infty}$. We mention those of its properties that are needed: for each $x = R_nY$ and each finite collection of coefficients $(c_1)_1^N$ we have

$$\left\|x + \sum_{i=1}^{N} c_{i} e_{n+i}\right\| \ge (1-\varepsilon) \|x\|, \quad n = 1, 2, \ldots,$$
(9)

for each collection of coefficients $(a_i)_1^n$ we have

$$\left\|\sum_{i=1}^{n} a_{i}e_{i}\right\| \ge \frac{1-\varepsilon}{2} \max\left\{|a_{i}|: 1 \le i \le n\right\}.$$
(10)

We verify that the sequence defined by formula (7) is a regularizer. According to relations (7) and (8), we have

$$\left\|\overline{R}_{n}Ax-R_{n}Ax\right\|=\left\|\sum_{k=1}^{n}\lambda_{k}g_{k}\left(A\left(R_{n}Ax-x\right)\right)e_{n+k}\right\|\leq \|A\|\|R_{n}Ax-x\|.$$

Since $\lim R_n Ax = x$, we also have $\lim \overline{R_n} Ax = x$. Now we prove that $(\overline{R_n})_1^{\infty}$ is a strictly resolving regularizer. Assume that n runs through some subsequence of the natural series and let $\lim \overline{R_n} y = x$. If we denote y - Ax = u, then $\overline{R_n} u \to 0$. In view of the inequality (9) we have $\|\overline{R_n} u\| \ge (1 - \varepsilon) \|R_n u\|$, so that $R_n u \to 0$ for the same sequence of indices. Thus, also, the last term in equality (7) tends to zero:

$$\lim_{n}\left\|\sum_{k=1}^{n}\lambda_{k}g_{k}\left(AR_{n}u-u\right)e_{n+k}\right\|=0.$$

According to (10), for any natural number m we have

$$\lim |\lambda_m g_m (AR_n u - u)| = 0,$$

from where $g_m(u) = 0$ for all m. Consequently, by virtue of the fact that the set $(g_n)_1^{\infty}$ is total, we have u = 0, i.e., y = Ax.

We note that, under the assumptions of Theorems 1 or 3, the existence of a linear finitedimensional resolving regularizer has been established also in [7].

At the consideration of the question of the regularizability of an operator A: $X \rightarrow Y$ there arise three different problems: on the existence of 1) a regularizer, 2) a linear regularizer, and 3) a linear finite-dimensional regularizer. As one can see from Theorem 1, in the case of a separable space X, all three problems (under the natural assumption of the weak separability of the space Y*) are equivalent to the analogous problems for the resolving regularizer. Theorems 2 and 3 show that for strictly resolving regularizers (if X is separable) the first and third problems can be solved in the case when they can be solved for resolving regularizers. The question regarding the second problem remains open:

<u>Question.</u> Assume that it is known that the operator A, acting from a separable space X, admits a linear resolving regularizer. Does A admit a strictly resolving regularizer?

LITERATURE CITED

- E. N. Domanskii, "On the question of the solvability of a linear operator equation," Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 25-30 (1979).
- H. Torunczyk, "Characterizing Hilbert space topology," Fund. Math., <u>111</u>, No. 3, 247-262 (1981).
- E. N. Domanskii and A. N. Plichko, "On a generalization of Picard's theorem on the solvability of Fredholm's integral equation of the first kind," Dokl. Akad. Nauk SSSR, <u>280</u>, No. 4, 731-734 (1985).
- 4. M. I. Kadets, "Nonlinear operator bases in a Banach space," Teor. Funktsii Funktsional. Anal. i Prilozhen. (Kharkov), No. 2, 128–130 (1966).
- 5. V. A. Vinokurov, Yu. I. Petunin, and A. N. Plichko, "Measurability and regularizability of mappings that are inverses of continuous linear operators," Mat. Zametki, <u>26</u>, No. 4, 583-591 (1979).
- 6. I. Singer, Bases in Banach Spaces, Vol. II, Springer, Berlin (1981).
- 7. E. N. Domanskii and V. P. Fonf, "Operator bases and solvability of operator equations of the first kind," Dokl. Akad. Nauk SSSR, <u>292</u>, No. 3, 531-534 (1987).

THERE IS NO LOCAL UNCONDITIONAL STRUCTURE IN ANISOTROPIC SPACES OF SMOOTH FUNCTIONS

S. V. Kislyakov and N. G. Sidorenko

UDC 513.881

INTRODUCTION

For every finite subset A of an integer lattice $\mathbf{Z}_{+}^{n} (= (\mathbf{Z}_{+})^{n})$ there corresponds a Banach space $C^{A}(\mathbf{T}^{n})$ consisting of all the continuous functions f on the torus \mathbf{T}^{n} whose derivatives (in the sense of the theory of generalized functions) corresponding to the multiindices from A are also continuous functions. The norm in $C^{A}(\mathbf{T}^{n})$ is specified by the equation

$$\|f\|_{C^A} = \|f\|_{\infty} + \sum_{a \in A} \|D^a f\|_{\infty},$$

where $\|\cdot\|_{\infty}$ is the standard supremum norm, $D^a = \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n}$ for $a = (\alpha_1, \dots, \alpha_n)$ and $(\partial_j f)$ $(z_1, \dots, z_n) \stackrel{\text{det}}{=} \frac{\partial}{\partial \theta} f(z_1, \dots, z_{j-1}, e^{i\theta}, z_{j+1}, \dots, z_n)|_{\theta = t_j}$, whenever $z_j = e^{itj}$.

When $A = \{a = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n : |a| = \alpha_1 + \ldots + \alpha_n \leq l\}$ the space $C^A(\mathbb{T}^n)$ is nothing else but the standard space $C^{(\ell)}(\mathbb{T}^n)$ of all ℓ -fold continuously differentiable functions. For n = 1this space is isomorphic to the space $C(\mathbb{T})$ for any ℓ (i.e., linearly homeomorphic). (Indeed, the operator ∂_1^{ℓ} maps $C^{(\ell)}(\mathbb{T})$ linearly onto $C(\mathbb{T})$ and its kernel contains only constants.) For $n \geq 2$ the situation substantially differs.

Grothendieck [1] was first to announce that for $n \ge 2$ and $\ell \ge 1$ the space $C^{(\ell)}(\mathbf{T}^n)$ is not isomorhic to the direct factor of C(K) for any compact K. The first proof of this fact was given by Khenkin [2]. Later Kislyakov [3] showed that for such n and ℓ the space $C^{(\ell)}(\mathbf{T}^n)$ is not isomorphic to any quotient space of the space C(K). Then Kislyakov [4] and Kwapien and Pelczynski [5] proved, by use of different techniques, that the space $C^{(\ell)}(\mathbf{T}^n)$ with $n \ge 2$ and $\ell \ge 1$ has no local unconditional structure. Roughly speaking, this latter fact means that "typical" finite-dimensional subspaces of $C^{(\ell)}(\mathbf{T}^n)$ are "far away" from the subspaces of a space with a 1-unconditional basis admitting "small norm" projection. Following [6], we now give a definition of the local unconditional structure.

A Banach space X is said to have a local unconditional structure if there exists a constant C > 0 such that for any finite-dimensional subspace F in X there are a Banach space E

Leningrad. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 29, No. 3, pp. 64-77, May-June, 1988. Original article submitted April 7, 1986.