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Continuation of a Linear Operator to an Involution Operator

M. I. Kadets and K. E. Kaibkhanov UDC 517

ABSTRACT. A bounded linear operator A: X — X in a linear topological space X is called a p-involution
operator, p > 2, if AP = I, where I is the identity operator. In this paper, we describe linear p-involution
operators in a linear topological space over the field C and prove that linear operators can be continued to
involution operators.
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The main goal of this paper is to prove that a linear operator can be continued to an involution operator.
A linear bounded operator A: X — X in a linear topological space X is called a p-involution operator,
p 2> 2,1 AP = ], where I is the identity operator; for p = 2, A is called an involution. In this
paper, consider only bounded linear operators. The operators of the form A = e2™*/P] 0 <k <p-—1,
provide the simplest example of linear p-involution operators in a linear topological space X over C. The
following statement shows that the set of such operators is essentially exhausted by the operators of the
form A =e2™ /P 0<k<p-1.
Theorem 1. Suppose that A: X — X is a linear p-involution operator in a linear topological space X
over C. Let ¢ = e2™/P . Then there exist subspaces X1, Xa,..., X, C X such that
DX=X10X28---8 Xp;
2) Alx, =¢'llx,, 0<k<p-1.

Proof. Consider the operators

p—1
Qi = i(Z(e""‘A)J), 1<k <p;
7=0

here we assume A° = I. Straightforward verification shows that the Q. are projections (that is, Q% = Qx).
We set X = Q(X). One can easily see that the X have the desired properties. O

Note that for p = 2, this theorem also holds for spaces over the field R.

Theorem 2. Let A: X — X be a linear operator in a linear topological space X (over the field R
or C) and let p > 2. Then there exists a linear topological space Z O X with the projection operator
P:Z — X (X can be complemented to Z) and a linear p-involution operator B: Z — Z such that
PB|x =A.

Proof. Let X5, X3,..., X, be copies of the space X, X; = X, and let Ug: X — X be the canonical
isometries, Uy = I|x. We form the direct sum Z = X1 6 X, @ - -@X,. Let Qr: Z — X be the canonical
projections. We define the operators

‘/l =U2U1—1Q17 V.2=U3U2—1Q27 ey Vp—-lepUp—_llQp—-la I/szlU;lQp’
V=Wi+Va+-+Vp
Next, we define an operator S: Z — X by setting S =U;'Q2 + U;'Q3 +--- + U;lQP and construct

the isomorphism T = I + AS. One can readily see that 7! = I — AS. Finally, we define the operator
B: Z — Z with the required properties by setting B = TVT~! (in this case, P = Q;). O
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Let us consider the case of a Hilbert space. It is natural to ask how to choose the best (with respect
to the norm) operator B in Theorem 2. The previous proof implies the estimate || B]| < (1 + [|4]])? for
p = 2. The following statement shows that this estimate can be improved.

Theorem 3. For any linear operator A: H — H in a Hilbert space H (over the field R or C), there
exists a Hilbert space E D H and a linear involution B: E — E such that

1) PB|y = A, where P: E — H is the operator of orthogonal projection;
2) the following estimate holds:

17 + 42

2
1Bl <

1
\/4HAH2 + A +2v2 if (Al > V2.

if |4l <v2;

We prove this theorem in the case of an infinite-dimensional separable Hilbert space over R ; this proof,
however, remains valid in other cases. To prove Theorem 3, we need some auxiliary statements.

We introduce the following notation: (z,y) is the inner product of elements z and y; [z;]52, is the
closed linear span of the vectors {z;}52; .

Let A: H — H be a linear operator in a Hilbert space H, and let {e;}$2, be an orthonormal basis
in H; we write g; = Ae;. Let F be a Hilbert space with an orthonormal basis {f;}72,. We form the
Hilbert space Z = (H @ F'); with the natural inner product ((e;, fr) = 0) and suppose that Q: Z — H is
the natural projection operator. If h € Z, then we sometimes write h = (e, f), having in mind that

e€ H and f € F. Weset h; = (gj,tf;j) € (H @ F);, where t > 0 (later, we choose an appropriate t),
and write [h;]32, =Y.

Lemma 1. {h;}$2, is a basisin Y equivalent to the basis {e;}32, in H.

Proof. For an arbitrary system of numbers {a;}$2,, we have
oo o0 oo
2 2 2 2
t (Zaj) = Zt a; < Zajgj
j:l j:] j=]_
o0
A(Z ajej)
i=1

2 2

2 oo oo oo oo
+) t%a} =13 ajh (Z ajAej, aﬁfj)
=1 j=1 J=1 j=1

2 o0 o0 oo o
+23af <NAIPY af +42) af = (I4I° +#°) ) ¢} O
Jj=1 j=1

i=1 =1

Lemma 2. Forany e€ H and he€Y,

41 el -]
e, Wl S FU R )

Proof. By setting h = (g, f) € (H® F)2, g = 3 32, ajg;, we obtain

B VISRl + Sz, 0a VAT

J

Lemma 3. For any {a;}%2; CR andany h €Y,

= 13232, aje;e
ei + Rl > A= o 2
2 et > VAT e )

562



oo

Proof. For brevity, we write > ._, aje; = e. Then it follows from (1) that

=1
G I Y N S i
e+ R = ez+2e,h+h2=]|e[2[<L——-———-——-— + > ,
and the lemma is thereby proved. O
Lemma 4. After the natural renumbering e, h1, €2, bz, ... , the set {e;}52, U{he}32, forms a basis

nZ.

Proof. Assume that z € Z is arbitrary and

o co
r= Za]-ej + Z bkfk.
7=1 k=1
Then
) 1.& 1.2 o0 13 1.
= Zajej + ;Zbkhk— ?Zbkgk = (Zajej - ;Zbkgk) + ;Zbkhk'
j=1 k=1 k=1 j=1 k=1 k=1
Since

'}ZbkngH,

k=1

it follows that there exist numbers {d;}$2, such that

< O

1
7 D bigr = dje;j.
k=1 j=1
Hence,
(o o] 1 [o o]
T = Z(aj - dj)ej + _t. Zbkhka
7=1 k=1

that is, z can be decomposed with respect to the elements {e;}32; U {hx}22;, and the coefficients in
this decomposition are determined uniquely. It remains to prove that there exists a C > 0 such that the

inequality [1, Proposition 1.a.3]

n+m I+s n {
Z aje;j +Zbkhk >C Zajej +Zbkhk .
Jj=1 k=1 1=1 k=1

1s satisfied for any n, m, [, and s € N. Obviously, it suffices to prove this inequality for

n

1
Z aje; + Z bihi

J=1 k=1

=1.

For brevity, we write

n 1
e=Zajej, h=2bkhk.
j=1 k=1

Let |le + k|| = 1. Then we have at least one of the cases: 1) |le]| > 1/2; 2) ||k]| = 1/2. Let us consider

each of them.

563



1) |lel| = 1/2. Using (2), we obtain

n+m I+s ”En+ma e: “t “Zn_ a-e'”t "
. bkl > j=1 %i%; j=1 BGIE .
2 aieit ) b k“‘ JIAE+2 — VAP +2 ~ /A + &

8

2) ||l = 1/2. We have

er—l

i 14
Il = (St 3 besi) o zbz >
k=1 k=1

Since ||gk]| < ||4]|, the previous inequality implies

1
All2 2. —
V4P + Zb 5
and heﬁce, )
1
LR e
Therefore,

n+m I+s

I+s
;ajej-i—;bkhk \l262>t\‘262_\/——m—l—2——+—?.

Thus, in both cases we can take C =t/(2/|| 4[> +2).

Proof of Theorem 3. 1) We set E = Z. By Lemma 4, we have E =Z = H®Y. We define an
operator B : E — E as follows:

oo oo oo oo
B (Z aje; + Z bkhk> = Z brer + z ajh,
j=1 k=1 k=1 j=1

Since the bases {e;}32, and {hx}32, are equivalent, the operator B is well defined. We set P = Q. For
an arbitrary

o0
z=Zajej€H,

=1

we have

PBz = PB (f‘; a,-e,) = P(i a,-h,-) = P((g a;g;s ]{; ajtfj>>

j=] j=1
o0 [e o oo
= Zajgj = ZajAej = A(Z aje]-) = Az,
j=1 j=1 j=1

that is, PB|y = A, and statement 1) in Theorem 3 is thereby proved.
2) Let us estimate || B]|. Let

oo oo
Z aje; + Z brhr
7j=1 k=1
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Then it follows from (2) that

oo oc 2
Za? = Zajﬁj < ﬂ—”?—— (3)
=1 =1
We have
oo (e o] o0
23 B <> ajei+ Y behel =1
j=1 7=1 k=1
Hence,

> 1
Y < - (4)
k=1

Using (3) and (4), we obtain

oo [=5) 2 [=2) 0 2 o] oo 2 [
”B(Z aje; + Z bkhk) = Z breg + Zajhj = Z brex + Zajgj + t? a?
j=1 k=1 k=1 j=1 k=1 i=1 Jj=1
’ oo oo 2 =) ' oo oo 2
< ([ ta)+ [T an]) +ea< (S a+iaSa) +lar+e
k=1 =1 J=1 k=1 j=1
oo o0 oo oo
=D B +20Al D | D AP Y + AP+
k=1 \ k=1 \ j=1 j=1
1 2|4 A2 +¢#2 ANZ(||4|% + 2
< L AAWVIAFEE | JAPGAR L) oo

Thus, ||B||?> cannot exceed the last term in this chain. We consider the two cases: a) ||4]] < V2 and

b) Al > V2.
a) |4l < V2. We set ¢t = v/2. Then we obtain

||BHS\/%+2\/§+8=\/H1—2—4£.

b) ||4|| > V2. In this case we set t = 1. Then one readily verify that

2 1
18] < \/4nAu b+ 22

Theorem 3 is proved. [
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