Continuation of a Linear Operator to an Involution Operator

M. I. Kadets and K. É. Kaibkhanov

UDC 517

Abstract

A bounded linear operator $A: X \rightarrow X$ in a linear topological space X is called a p-involution operator, $p \geq 2$, if $A^{p}=I$, where I is the identity operator. In this paper, we describe linear p-involution operators in a linear topological space over the field \mathbb{C} and prove that linear operators can be continued to involution operators.

KEY wORDS: linear topological space, linear operator, p-involution operator.

The main goal of this paper is to prove that a linear operator can be continued to an involution operator.
A linear bounded operator $A: X \rightarrow X$ in a linear topological space X is called a p-involution operator, $p \geq 2$, if $A^{p}=I$, where I is the identity operator; for $p=2, A$ is called an involution. In this paper, consider only bounded linear operators. The operators of the form $A=e^{2 \pi k i / p} I, 0 \leq k \leq p-1$, provide the simplest example of linear p-involution operators in a linear topological space X over \mathbb{C}. The following statement shows that the set of such operators is essentially exhausted by the operators of the form $A=e^{2 \pi k i / p} I, 0 \leq k \leq p-1$.

Theorem 1. Suppose that $A: X \rightarrow X$ is a linear p-involution operator in a linear topological space X over \mathbb{C}. Let $\varepsilon=e^{2 \pi i / p}$. Then there exist subspaces $X_{1}, X_{2}, \ldots, X_{p} \subset X$ such that

1) $X=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{p}$;
2) $\left.A\right|_{X_{k}}=\left.\varepsilon^{k} I\right|_{X_{k}}, 0 \leq k \leq p-1$.

Proof. Consider the operators

$$
Q_{k}=\frac{1}{p}\left(\sum_{j=0}^{p-1}\left(\varepsilon^{p-k} A\right)^{j}\right), \quad 1 \leq k \leq p
$$

here we assume $A^{0}=I$. Straightforward verification shows that the Q_{k} are projections (that is, $Q_{k}^{2}=Q_{k}$). We set $X_{k}=Q_{k}(X)$. One can easily see that the X_{k} have the desired properties.

Note that for $p=2$, this theorem also holds for spaces over the field \mathbb{R}.
Theorem 2. Let $A: X \rightarrow X$ be a linear operator in a linear topological space X (over the field \mathbb{R} or \mathbb{C}) and let $p \geq 2$. Then there exists a linear topological space $Z \supset X$ with the projection operator $P: Z \rightarrow X(X$ can be complemented to $Z)$ and a linear p-involution operator $B: Z \rightarrow Z$ such that $\left.P B\right|_{X}=A$.

Proof. Let $X_{2}, X_{3}, \ldots, X_{p}$ be copies of the space $X, X_{1}=X$, and let $U_{k}: X \rightarrow X_{k}$ be the canonical isometries, $U_{1}=\left.I\right|_{X}$. We form the direct sum $Z=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{p}$. Let $Q_{k}: Z \rightarrow X_{k}$ be the canonical projections. We define the operators

$$
\begin{gathered}
V_{1}=U_{2} U_{1}^{-1} Q_{1}, \quad V_{2}=U_{3} U_{2}^{-1} Q_{2}, \quad \cdots, \quad V_{p-1}=U_{p} U_{p-1}^{-1} Q_{p-1}, \quad V_{p}=U_{1} U_{p}^{-1} Q_{p} \\
V=V_{1}+V_{2}+\cdots+V_{p}
\end{gathered}
$$

Next, we define an operator $S: Z \rightarrow X$ by setting $S=U_{2}^{-1} Q_{2}+U_{3}^{-1} Q_{3}+\cdots+U_{p}^{-1} Q_{p}$ and construct the isomorphism $T=I+A S$. One can readily see that $T^{-1}=I-A S$. Finally, we define the operator $B: Z \rightarrow Z$ with the required properties by setting $B=T V T^{-1}$ (in this case, $P=Q_{1}$).

[^0]Let us consider the case of a Hilbert space. It is natural to ask how to choose the best (with respect to the norm) operator B in Theorem 2. The previous proof implies the estimate $\|B\| \leq(1+\|A\|)^{2}$ for $p=2$. The following statement shows that this estimate can be improved.

Theorem 3. For any linear operator $A: H \rightarrow H$ in a Hilbert space H (over the field \mathbb{R} or \mathbb{C}), there exists a Hilbert space $E \supset H$ and a linear involution $B: E \rightarrow E$ such that

1) $\left.P B\right|_{H}=A$, where $P: E \rightarrow H$ is the operator of orthogonal projection;
2) the following estimate holds:

$$
\|B\| \leq \begin{cases}\sqrt{\frac{17+4 \sqrt{2}}{2}} & \text { if }\|A\| \leq \sqrt{2} \\ \sqrt{4\|A\|^{2}+\frac{1}{\|A\|^{2}}+2 \sqrt{2}} & \text { if }\|A\|>\sqrt{2}\end{cases}
$$

We prove this theorem in the case of an infinite-dimensional separable Hilbert space over \mathbb{R}; this proof, however, remains valid in other cases. To prove Theorem 3, we need some auxiliary statements.

We introduce the following notation: $\langle x, y\rangle$ is the inner product of elements x and $y ;\left[x_{j}\right]_{j=1}^{\infty}$ is the closed linear span of the vectors $\left\{x_{j}\right\}_{j=1}^{\infty}$.

Let $A: H \rightarrow H$ be a linear operator in a Hilbert space H, and let $\left\{e_{j}\right\}_{j=1}^{\infty}$ be an orthonormal basis in H; we write $g_{j}=A e_{j}$. Let F be a Hilbert space with an orthonormal basis $\left\{f_{j}\right\}_{j=1}^{\infty}$. We form the Hilbert space $Z=(H \oplus F)_{2}$ with the natural inner product ($\left\langle e_{j}, f_{k}\right\rangle=0$) and suppose that $Q: Z \rightarrow H$ is the natural projection operator. If $h \in Z$, then we sometimes write $h=(e, f)$, having in mind that $e \in H$ and $f \in F$. We set $h_{j}=\left(g_{j}, t f_{j}\right) \in(H \oplus F)_{2}$, where $t>0$ (later, we choose an appropriate t), and write $\left[h_{j}\right]_{j=1}^{\infty}=Y$.

Lemma 1. $\left\{h_{j}\right\}_{j=1}^{\infty}$ is a basis in Y equivalent to the basis $\left\{e_{j}\right\}_{j=1}^{\infty}$ in H.
Proof. For an arbitrary system of numbers $\left\{a_{j}\right\}_{j=1}^{\infty}$, we have

$$
\begin{aligned}
t^{2}\left(\sum_{j=1}^{\infty} a_{j}^{2}\right) & =\sum_{j=1}^{\infty} t^{2} a_{j}^{2} \leq\left\|\sum_{j=1}^{\infty} a_{j} g_{j}\right\|^{2}+\sum_{j=1}^{\infty} t^{2} a_{j}^{2}=\left\|\sum_{j=1}^{\infty} a_{j} h_{j}\right\|^{2}=\left\|\left(\sum_{j=1}^{\infty} a_{j} A e_{j}, \sum_{j=1}^{\infty} a_{j} t f_{j}\right)\right\|^{2} \\
& =\left\|A\left(\sum_{j=1}^{\infty} a_{j} e_{j}\right)\right\|^{2}+t^{2} \sum_{j=1}^{\infty} a_{j}^{2} \leq\|A\|^{2} \sum_{j=1}^{\infty} a_{j}^{2}+t^{2} \sum_{j=1}^{\infty} a_{j}^{2}=\left(\|A\|^{2}+t^{2}\right) \sum_{j=1}^{\infty} a_{j}^{2}
\end{aligned}
$$

Lemma 2. For any $e \in H$ and $h \in Y$,

$$
\begin{equation*}
|\langle e, h\rangle| \leq \frac{\|A\| \cdot\|e\| \cdot\|h\|}{\sqrt{\|A\|^{2}+t^{2}}} . \tag{1}
\end{equation*}
$$

Proof. By setting $h=(g, f) \in(H \oplus F)_{2}, g=\sum_{j=1}^{\infty} a_{j} g_{j}$, we obtain

$$
|\langle e, h\rangle|=|\langle e, g\rangle| \leq\|e\| \cdot\|g\|=\frac{\|e\| \cdot\|g\| \cdot\|h\|}{\|h\|}=\frac{\|e\| \cdot\left\|\sum_{j=1}^{\infty} a_{j} g_{j}\right\| \cdot\|h\|}{\sqrt{\left\|\sum_{j=1}^{\infty} a_{j} g_{j}\right\|^{2}+\sum_{j=1}^{\infty} t^{2} a_{j}^{2}}} \leq \frac{\|A\| \cdot\|e\| \cdot\|h\|}{\sqrt{\|A\|^{2}+t^{2}}}
$$

Lemma 3. For any $\left\{a_{j}\right\}_{j=1}^{\infty} \subset \mathbb{R}$ and any $h \in Y$,

$$
\begin{equation*}
\left\|\sum_{j=1}^{\infty} a_{j} e_{j}+h\right\| \geq \frac{\left\|\sum_{j=1}^{\infty} a_{j} e_{j}\right\| t}{\sqrt{\|A\|^{2}+t^{2}}} \tag{2}
\end{equation*}
$$

Proof. For brevity, we write $\sum_{j=1}^{\infty} a_{j} e_{j}=e$. Then it follows from (1) that

$$
\|e+h\|^{2}=\|e\|^{2}+2\langle e, h\rangle+\|h\|^{2}=\|e\|^{2}\left[\left(\frac{\|h\|}{\|e\|}-\frac{\|A\|}{\sqrt{\|A\|^{2}+t^{2}}}\right)^{2}+\frac{t^{2}}{\|A\|^{2}+t^{2}}\right] \geq \frac{\|e\|^{2} t^{2}}{\|A\|^{2}+t^{2}}
$$

and the lemma is thereby proved.
Lemma 4. After the natural renumbering $e_{1}, h_{1}, e_{2}, h_{2}, \ldots$, the set $\left\{e_{j}\right\}_{j=1}^{\infty} \cup\left\{h_{k}\right\}_{k=1}^{\infty}$ forms a basis in Z.

Proof. Assume that $x \in Z$ is arbitrary and

$$
x=\sum_{j=1}^{\infty} a_{j} e_{j}+\sum_{k=1}^{\infty} b_{k} f_{k}
$$

Then

$$
x=\sum_{j=1}^{\infty} a_{j} e_{j}+\frac{1}{t} \sum_{k=1}^{\infty} b_{k} h_{k}-\frac{1}{t} \sum_{k=1}^{\infty} b_{k} g_{k}=\left(\sum_{j=1}^{\infty} a_{j} e_{j}-\frac{1}{t} \sum_{k=1}^{\infty} b_{k} g_{k}\right)+\frac{1}{t} \sum_{k=1}^{\infty} b_{k} h_{k} .
$$

Since

$$
\frac{1}{t} \sum_{k=1}^{\infty} b_{k} g_{k} \in H
$$

it follows that there exist numbers $\left\{d_{j}\right\}_{j=1}^{\infty}$ such that

$$
\frac{1}{t} \sum_{k=1}^{\infty} b_{k} g_{k}=\sum_{j=1}^{\infty} d_{j} e_{j} .
$$

Hence,

$$
x=\sum_{j=1}^{\infty}\left(a_{j}-d_{j}\right) e_{j}+\frac{1}{t} \sum_{k=1}^{\infty} b_{k} h_{k},
$$

that is, x can be decomposed with respect to the elements $\left\{e_{j}\right\}_{j=1}^{\infty} \cup\left\{h_{k}\right\}_{k=1}^{\infty}$, and the coefficients in this decomposition are determined uniquely. It remains to prove that there exists a $C>0$ such that the inequality [1, Proposition 1.a.3]

$$
\left\|\sum_{j=1}^{n+m} a_{j} e_{j}+\sum_{k=1}^{l+s} b_{k} h_{k}\right\| \geq C\left\|\sum_{j=1}^{n} a_{j} e_{j}+\sum_{k=1}^{l} b_{k} h_{k}\right\| .
$$

is satisfied for any n, m, l, and $s \in \mathbb{N}$. Obviously, it suffices to prove this inequality for

$$
\left\|\sum_{j=1}^{n} a_{j} e_{j}+\sum_{k=1}^{l} b_{k} h_{k}\right\|=1
$$

For brevity, we write

$$
e=\sum_{j=1}^{n} a_{j} e_{j}, \quad h=\sum_{k=1}^{l} b_{k} h_{k} .
$$

Let $\|e+h\|=1$. Then we have at least one of the cases: 1) $\|e\| \geq 1 / 2 ; 2$) $\|h\| \geq 1 / 2$. Let us consider each of them.

1) $\|e\| \geq 1 / 2$. Using (2), we obtain

$$
\left\|\sum_{j=1}^{n+m} a_{j} e_{j}+\sum_{k=1}^{l+s} b_{k} h_{k}\right\| \geq \frac{\left\|\sum_{j=1}^{n+m} a_{j} e_{j}\right\| t}{\sqrt{\|A\|^{2}+t^{2}}} \geq \frac{\left\|\sum_{j=1}^{n} a_{j} e_{j}\right\| t}{\sqrt{\|A\|^{2}+t^{2}}} \geq \frac{t}{2 \sqrt{\|A\|^{2}+t^{2}}}
$$

2) $\|h\| \geq 1 / 2$. We have

$$
\|h\|=\left\|\sum_{k=1}^{l} b_{k} h_{k}\right\|=\left\|\left(\sum_{k=1}^{l} b_{k} g_{k}, t \sum_{k=1}^{l} b_{k} f_{k}\right)\right\|=\sqrt{\left\|\sum_{k=1}^{l} b_{k} g_{k}\right\|^{2}+t^{2} \sum_{k=1}^{l} b_{k}^{2}} \geq \frac{1}{2} .
$$

Since $\left\|g_{k}\right\| \leq\|A\|$, the previous inequality implies

$$
\sqrt{\|A\|^{2}+t^{2}} \cdot \sqrt{\sum_{k=1}^{l} b_{k}^{2}} \geq \frac{1}{2}
$$

and hence,

$$
\sqrt{\sum_{k=1}^{l} b_{k}^{2}} \geq \frac{1}{2 \sqrt{\|A\|^{2}+t^{2}}}
$$

Therefore,

$$
\left\|\sum_{j=1}^{n+m} a_{j} e_{j}+\sum_{k=1}^{l+s} b_{k} h_{k}\right\| \geq t \sqrt{\sum_{k=1}^{l+s} b_{k}^{2}} \geq t \sqrt{\sum_{k=1}^{l} b_{k}^{2}} \geq \frac{t}{2 \sqrt{\|A\|^{2}+t^{2}}} .
$$

Thus, in both cases we can take $C=t /\left(2 \sqrt{\|A\|^{2}+t^{2}}\right)$.
Proof of Theorem 3. 1) We set $E=Z$. By Lemma 4, we have $E=Z=H \oplus Y$. We define an operator $B: E \rightarrow E$ as follows:

$$
B\left(\sum_{j=1}^{\infty} a_{j} e_{j}+\sum_{k=1}^{\infty} b_{k} h_{k}\right)=\sum_{k=1}^{\infty} b_{k} e_{k}+\sum_{j=1}^{\infty} a_{j} h_{j} .
$$

Since the bases $\left\{e_{j}\right\}_{j=1}^{\infty}$ and $\left\{h_{k}\right\}_{k=1}^{\infty}$ are equivalent, the operator B is well defined. We set $P=Q$. For an arbitrary

$$
x=\sum_{j=1}^{\infty} a_{j} e_{j} \in H
$$

we have

$$
\begin{aligned}
P B x & =P B\left(\sum_{j=1}^{\infty} a_{j} e_{j}\right)=P\left(\sum_{j=1}^{\infty} a_{j} h_{j}\right)=P\left(\left(\sum_{j=1}^{\infty} a_{j} g_{j}, \sum_{j=1}^{\infty} a_{j} t f_{j}\right)\right) \\
& =\sum_{j=1}^{\infty} a_{j} g_{j}=\sum_{j=1}^{\infty} a_{j} A e_{j}=A\left(\sum_{j=1}^{\infty} a_{j} e_{j}\right)=A x,
\end{aligned}
$$

that is, $\left.P B\right|_{H}=A$, and statement 1) in Theorem 3 is thereby proved.
2) Let us estimate $\|B\|$. Let

$$
\left\|\sum_{j=1}^{\infty} a_{j} e_{j}+\sum_{k=1}^{\infty} b_{k} h_{k}\right\|=1
$$

Then it follows from (2) that

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{j}^{2}=\left\|\sum_{j=1}^{\infty} a_{j} e_{j}\right\|^{2} \leq \frac{\|A\|^{2}+t^{2}}{t^{2}} \tag{3}
\end{equation*}
$$

We have

$$
\sqrt{t^{2} \sum_{j=1}^{\infty} b_{j}^{2}} \leq\left\|\sum_{j=1}^{\infty} a_{j} e_{j}+\sum_{k=1}^{\infty} b_{k} h_{k}\right\|=1
$$

Hence,

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{k}^{2} \leq \frac{1}{t^{2}} \tag{4}
\end{equation*}
$$

Using (3) and (4), we obtain

$$
\begin{aligned}
& \left\|B\left(\sum_{j=1}^{\infty} a_{j} e_{j}+\sum_{k=1}^{\infty} b_{k} h_{k}\right)\right\|^{2}=\left\|\sum_{k=1}^{\infty} b_{k} e_{k}+\sum_{j=1}^{\infty} a_{j} h_{j}\right\|^{2}=\left\|\sum_{k=1}^{\infty} b_{k} e_{k}+\sum_{j=1}^{\infty} a_{j} g_{j}\right\|^{2}+t^{2} \sum_{j=1}^{\infty} a_{j}^{2} \\
& \quad \leq\left(\left\|\sum_{k=1}^{\infty} b_{k} e_{k}\right\|+\left\|\sum_{j=1}^{\infty} a_{j} g_{j}\right\|\right)^{2}+t^{2} \sum_{j=1}^{\infty} a_{j}^{2} \leq\left(\sqrt{\sum_{k=1}^{\infty} b_{k}^{2}}+\|A\| \sqrt{\sum_{j=1}^{\infty} a_{j}^{2}}\right)^{2}+\|A\|^{2}+t^{2} \\
& \quad=\sum_{k=1}^{\infty} b_{k}^{2}+2\|A\| \sqrt{\sum_{k=1}^{\infty} b_{k}^{2}} \cdot \sqrt{\sum_{j=1}^{\infty} a_{j}^{2}}+\|A\|^{2} \sum_{j=1}^{\infty} a_{j}^{2}+\|A\|^{2}+t^{2} \\
& \quad \leq \frac{1}{t^{2}}+\frac{2\|A\| \sqrt{\|A\|^{2}+t^{2}}}{t^{2}}+\frac{\|A\|^{2}\left(\|A\|^{2}+t^{2}\right)}{t^{2}}+\|A\|^{2}+t^{2} .
\end{aligned}
$$

Thus, $\|B\|^{2}$ cannot exceed the last term in this chain. We consider the two cases: a) $\|A\| \leq \sqrt{2}$ and b) $\|A\|>\sqrt{2}$.
a) $\|A\| \leq \sqrt{2}$. We set $t=\sqrt{2}$. Then we obtain

$$
\|B\| \leq \sqrt{\frac{1}{2}+2 \sqrt{2}+8}=\sqrt{\frac{17+4 \sqrt{2}}{2}}
$$

b) $\|A\|>\sqrt{2}$. In this case we set $t=1$. Then one readily verify that

$$
\|B\| \leq \sqrt{4\|A\|^{2}+\frac{1}{\|A\|^{2}}+2 \sqrt{2}}
$$

Theorem 3 is proved.

References

1. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Springer, Berlin (1977).
(M. I. Kadets) Khar'kov State Academy of Municipal Economy
(K. É. Kaibkhanov) Taganrog Radiotechnical University

[^0]: Translated from Matematicheskie Zametki, Vol. 61, No. 5, pp. 671-676, May, 1997.
 Original article submitted July 13, 1995.

