
I) tetrahedron, then r is a four-sectioned polygonal arc, determined by six parameters 
within the given polyhedron, 

2) cube or 3) octahedron, then F is a six-sectloned polygonal arc, determined by twelve 
parameters, 

4) icosahedron or 5) dodecahedron, then F is a ten-sectioned polygonal arc, determined 
by thirty parameters. 

One can see the existence of the closed path F directly (of. the figure). In cases i), 
2), and 3), the path F completely determines the polyhedron, since either in the sequence 
of faces {~k } all faces of the polyhedron occur, or in the path F all its vertices occur. 
In cases 4) and 5) this is not so. In case 4) the path P does not contain two points which 
can be taken arbitrarily. The arbitrariness in determining one point in relation to P is 
determined By three parameters: the dihedral angle, the angle between two edges, and the 
length of an edge. Hence, the arbitrariness in defining a polyhedron with net of edges of 
an icosahedron consists of arbitrarily giving a ten-sectioned polygonal arc + six parameters, 
i.e., thirty parameters. One can make analogous considerations in case 5). 

Since the angles ~i between edges of the polyhedron are supplementary to the curvature 
angles ~i of the path r, and the angles Between faces 8i are the torsion angles of this poly- 
gonal arc, writing the closedness conditions for the curve F, we get conditions on the param- 
eters defining the polyhedron itself. 

A NORMABILITY CONDITION FOR FRECHET SPACES 

V, M. Kadets and M. I. Kadets 

Introduction. Several papers have been published recently, devoted to the generaliza- 
tion of James' known theorem on the reflexivity of a Banach space to linear metrizable spaces 
(see references cited in [i]). Zarnadze [i] has formulated, among other results in this 
direction, an interesting statement connecting the normability of a Frechet space with the 
presence in it of some continuous norm. Unfortunately, his proof is not valid. 

The purpose of the present paper is to prove Zarnadze's statement, at the same time set- 
ting it free of redundant assumptions (Theorem i), to prove a statement that is dual in a 
certain sense (Theorem 2), and to give examples which show that Theorems i and 2 cannot be 
extended to complete, nonmetrizable, locally convex spaces. 

I. Definitions and Auxiliary Results 

LEMMA i [2]. Let X be a complete metric space, let Y be a metric space, and let u be a 
continuous mapping of X into Y. Assume further that for each r > 0 there exists p > 0 such 
that for any z~X the image of the closed ball Br(x) of radius r and center in x is dense 
in the ball Bp(u(x)). Then for any a > r we have the inclusion (Ba(z))~Bp(~(z)). 

Definition I. A subset R of the unit sphere S(E) of a reflexive Banach space E is a 
boundary if for each linear functional /+~_-E' there exists x~R such that f(x) = I1111. 

We note that by virtue of James' well-known theorem (see [3]) on linear functionals 
which attain their norms, the concept of a boundary can be introduced only for reflexive 
spaces. 

LEMMA 2 [4]~ If a boundary R of a reflexive Banach space E is covered by an increasing 
sequence of absolutely convex closed sets, then at least one of them has a nonempty interior. 

LEMMA 3. Let X be a Frechet space and let Y be a reflexive Banach space with boundary 
R. Let T be a continuous linear operator from X into Y and let T (X) LD R. Then T is a 
surjection. 
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Proof. Assume that on X there is given a metric defining the topology and let Br be a 
ball of radius r > 0 with center at zero. Let V~B~ be a convex neighborhood of zero in 

7 X~. Then X=U,~=In~. Since by the assumption of the lemma we have T (X)~R, it follows 

that: ~,~i T (nV)~R. Consequently, by Lemma 2, the closure of the set T(V) has a nonempty 

interior and thus the set T(B r) is dense in some ball of the space Y. Since r has been 
selected in an arbitrary manner, it follows by Lemma i that the set T(Br) contains some ball 
of the space Y, i.e., T is a surjection. 

In the case when X is a Banach space, this proposition has been proved in [5, Theorem i]. 

Definition 2. Let V be a closed absolutely convex subset of a locally convex space X; 
let p(.) be the seminorm generated by the set V in its linear hull Lin V. A linear function- 
al ]~X' will be said to be attaining for the point x~Lin V (and denoted by fx) if 
fx(X) = p(x) and fx(Y) ! P(Y) for all y~Lin V. By the algebraic boundary ~V of a set V we 
mean the set of those x~V for which p(x) = i. A point x~aV will be said to be attain- 
able if there exists for it an attaining functional fx. If the set V has a nonempty interior, 
then, by the Hahn--Banach theorem, each point of its boundary 3V is attainable. 

2. Fundamental Results 

THEOREM i. Let X be a Frechet space and let p(') be a continuous norm on X, satisfying 
the following condition (J): each linear functional ]~X', bounded on the set 

U~ = {x ~ X: p (z) -~ t}, 

attains on it its supremum. Then p(-) generates the initial topology on X which, consequent- 
ly, turns out to be isomorphic to a reflexive Banach space. 

Proof. We consider the space Y, the completion of the space X with respect to the norm 
p(-). We denote by T the identity imbedding of X into Y. Since the norm p(.) is continuous, 
it follows that T is a continuous injection. Since p(.) satisfies condition (J), by James' 
theorem [3], Y is reflexive and T(X) contains some boundary in the space Y. Consequently, by 
Lemma 3, the operator T is a surjection. Then, according to Banach's inverse operator theor- 
em, T is an isomorphism between the Frechet space X and the reflexive Banach space Y. The 
theorem is proved. 

We proceed to the proof of the dual statement which, in some sense, is the inverse of 
the Hahn--Banach theorem. 

THEOREM 2. Let X be a Frechet space; let V be a closed, bounded, absolutely convex set, 
whose linear hull is dense in X. Assume that V satisfies the following condition (J~): each 
point of its algebraic boundary is attainable. Then V is a neighborhood of zero in X, de- 
fining the initial topology on X which, consequently , turns out to be isomorphic to a Banach 
space. 

Proof. Let p,(.), p2(*), ... be an increasing sequence of seminorms, defining the top- 
ology of the space X. We denote by p(,) the seminorm generated by the set V on Lin V. We 
assume that V has an empty interior (i.e., it is not a neighborhood). This means that, for 
any of the seminorms, defining jointly the topology, we have inf{pn(x): x~OV} = O. We select 
an element e~-OV such that pa(e~) < 4 -~. We select the coefficient a~ = (I + 2-I)-~; then 
p(alea) = (i + 2-') -I. We consider the closed subspace of codimension one X I = kerfe,. 
Clearly, Lin V ~ XI is dense in X~ and V !~ XI has an empty interior. Therefore, one can 
select e2~#V such that /e~ {e~) = 0 and p2(e2) ~ 4 -2 �9 According to the triangle inequality, 
we have 

Since p(a,e~) 
equality 

should hold. 

max {p (a,e ,  + e~), p (ale 1 - -  e2)} ~ I. 

= (i + 2-x) -a, we can select the coefficient a~, --I < ~2 < 

p (ale,  -~- aee~) = ( t  -[- 2-2) - '  

We consider the closed subspace of codimension two 

i, so that the 

X 2 ~ Ker [e, ~ Ker/a,e,+~e~. 
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Starting from the same considerations as in the case Xx, we can select an element % ~ OV 
so that ~% (e,) = ~a,e,+ar (e,~) = 0 and p,(e,) ~ 4-s, In this ease we again have 

max {p (~Le, + .~e,2 + ,'~), p (.~el + ~,,~e.~ - e.~)} ~ t 

and we can s e l e c t  the  c o e f f i c i e n t  cza, - 1  < a s  < 1, so t h a t  the  e q u a l i t y  

p (atel -5 a~e,s -t- ases) = (l -5 2-3) "* 

should hold. Continuing this process indefinitely, we obtain a sequence of elements {en)~ 

and of coefficients {an}1. Introducing the notation s n =~,~=la~ek, we can write the proper- 

ties of the selected sequences in the following manner: 

l a,, I <  t,  p @,,) = t,  p,, (e,,) < 4-'~; 
h~ (e,O = 0 (t ..< k < n), 

p (s,O = (t + 2-'*)'L n = t ,  2 . . . .  

From here it follows, in particular, that the series ~:=aanQ converges in the topology of 

the space X and, by virtue of the fact that V is closed, its sum s belongs to the set V: 
p(s) ~ i. From the definition of the functionals /Sn we obtain the following inequalities: 

p (s) >11]% (s) = / % ( % 0  =P(Sn)  = ( i - 5 2 - n )  -~, n = 1 ,2  . . . .  

Consequently, p(s) = I, i.e., s~ OV. Now we prove that s is an unattainable point of the 
set V. We select an arbitrary linear functional ] ~ X' such that f(s) > 0. We form a non- 
increasing sequence of quantities 

p~ (/) = sup ( / (x) :  x ~_ x ,  p,~ (x) < l} .  

Let no be the index starting with which pn(f) < ~. Without loss of generality, we can as- 
sume that p,, (]) -~ i. We select m > no in such a manner that the inequalities 

/ (Sm) > +  /(s) > 2-" (2) 

should hold. We define the element y ~ 0V in the following manner: 

y = sm/p (sin) = (i -5 2 -m) sin. (2) 

We compare the  v a l u e s  of  f ( s )  and f ( y ) :  
o o  o o  

f (s)= / (sin) -5 ~'~=m+l a~f (e~.) ~ f (sin) -5 ~ = m + l  ] a~ I" Pe ([)" P~ (ek), 

and,  s i n c e  Ink [ < i , p ~  ( ] ) < p n . ( ] )  = t , ~ p ~  ( e k ) < 4  -m, we have  

/ (~ < / (sin) + 4-~. 

If we now make use of (I) and (2), then we obtain that 

] (s) < ] (s~) + 2 -(m§ (s) < ] (sin) -5 2 -~] (s~) = ] (y). 

Thus, no linear functional ]~X' attains at the point s~OV its supremum on the set V. 
Contradiction. Consequently, V has a nonempty interior. Now, finally, we make use of the 
boundedness of the neighborhood V of zero and by Kolmogorov's theorem we obtain that V de- 
fines the initial topology of the space X. The theorem is proved. 

In conclusion, we give an example of a complete, barrelled, convex space, to which 
Theorem I cannot be extended. 

James [6] has constructed an example of an incomplete normed space Eo, in which each 
continuous linear functional attains its norm on the unit ball [i.e., the norm of the space 
Eo has property (J)]. We denote the norm of the space Eo by Po('). We introduce in Eo the 
strongest locally convex topology and we denote the obtained locally convex space by E; it 
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is known [7, 8] that E is complete and barrelled. We obtain: in the complete, barrelled, 
locally convex space E there exists a continuous norm with the property (J); however, E is 
not a normed space. Finally, we show that the conjugate space E' is a counterexample to the 
possibility of the extension of Theorem 2. We select in E' a set V, the polar of the set 
U = {x~E: p0(x)<1}. We obtain: in the complete, barrelled, locally convex space X = 
(E', o(E', E)), there exists a bounded, closed, absolutely convex set V with property (J*) 
which, however, does not define the initial topology in X. 
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A METHOD OF CONSTRUCTING FAST ALGORITHMS IN THE k-VALUED LOGIC 

V. B. Alekseev and N. R. Emel'yanov 

Various problems in multivalued logics, in particular problems related to functional com- 
pleteness, often require solving the question on membership of a given function in a given 
closed class [i]. The present article describes a general method of constructing fast algor- 
ithms for detecting whether functions of multivalued logic belong to classes defined by predi- 
cates, and produces examples of applications of this method. 

We denote by E k the set {0, I, ..., k-- i} and by Enk the set of all n-tuples 5 n = (a~, 
..., a n ) with elements in E k. The family of all functions f(x~, ..., Xn) mapping Enk, for 
some natural number n, to Ek is denoted by Pk. Suppose that'a function f(~n): En k + E k and 
an l-ary predicate R(il): E~k ~ E2 are given. We say that the function f(in) preserves the 
predicate R(~ l) if for any I n-tuples ~n i = (ail , ..., ~in) (i = i .... , l) holds the implica- 
tion 

(VjR(~j,.. ~z j )=l )~R(/ (~) ,  I(~)) 1. (1) 

The family of all functions preserving a predicate R(~ l) is a closed class in Pk relative 
to the superposition operation and is called the preservation class of the predicate R(i~). 
We will note this class by <(R). 

Below, we will describe a method of constructing algorithms for detecting the membership 
of functions /(@~)~P~ in the class ~(R); here, the predicate R(i Z) need not be fixed, i.e., 
it may be given at the input of the algorithm together with the function f(in). This variant 
of the problem arises, for instance, when it becomes necessary to construct algorithms for 
recognizing membership of functions in classes defined by predicates within some growing set. 
We will perform an estimation of time complexity of algorithms obtained by the method de- 
scribed. The time complexity of an algorithm means dependence of the number of steps used by 
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