CONDITIONS FOR THE CONVEXITY OF THE LIMIT SET OF RIEMANN SUMS

OF A VECTOR-VALUED FUNCTION

V. M. Kadets and M. I. Kadets

Let there be given a bounded function f from the segment [0, 1] into a Banach space and suppose that Γ is a partition of this segment by the points α_k and b_k :

$$0 = a_1 < b_1 = a_2 < b_2 = \dots < b_N = 1.$$

In each interval (α_j, b_j) we select a point x_j . The vector from X that is equal to $\sum_{i=1}^{N} f(x_i) \Delta_i$, where $\Delta_i = b_j - a_i$, is called the Riemann sum σ_i (Γ , $\{x_j\}$), corresponding to the given function f, the given partition Γ , and the selected set $\{x_j\}$. We will say that a partition Γ is finer than ε if $\Delta_j < \varepsilon$ for arbitrary j. A point $y \in X$ is called a limit power of the Riemann sums of f if for each $\varepsilon > 0$ there exist a partition Γ that is finer than ε and a set of points $\{x_j\}$ such that $\|\sigma_i(\Gamma, \{x_i\}) - y\| \leq \varepsilon$. Let us denote the set of all limit points of the Riemann sums of the function f by $\mathcal{I}(f)$. If X is the real axis, then $\mathcal{I}(f)$ is the segment joining the lower and the upper Riemann integrals of f. As proved in [1], if X is a finitedimensional space or a Hilbert space, then J(f) is a convex set.

The aim of the present article is, in the first place, to extend the result of [1] to B-convex Banach spaces and, secondly, to give an example of a bounded function g from the segment [0, 1] into the space l_1 such that $\mathcal{J}(g)$ is not a convex set.

We will say that a Banach space Y has type p with a constant C if for each set of vectors $y_1, y_2, \ldots, y_n \in Y$ there exists a set of numbers $\xi_1, \xi_2, \ldots, \xi_n = \pm 1$ such that

$$\left\|\sum_{k=1}^{n} \xi_{k} y_{k}\right\|^{p} \leqslant C \sum_{k=1}^{n} \|y_{k}\|^{p}.$$

A Banach space is said to be B-convex if it has type p>1. For example, all spaces L_p for 1 are B-convex.

<u>THEOREM 1.</u> Let a Banach space Y have type p > 1 with a constant C. Let a function $f: [0; 1] \to Y$ be such that $|| f(x) || \leq k < \infty$ for each x in its domain. Then $\mathcal{J}(f)$ is a convex set.

<u>Proof.</u> Let y_1 and y_2 belong to $\mathcal{J}(f)$. We prove that $(y_1 + y_2)/2 \in \mathcal{J}(f)$. Let there be given an N > 1. We select partitions Γ_1 and Γ_2 , finer than 2^{-2N} , and point sets $\{x_k^1\}$ and $\{x_k^2\}$, such that $\|\sigma_f(\Gamma_1, \{x_k^1\}) - y_1\| \leqslant 2^{-N}$ and $\|\sigma_f(\Gamma_2, \{x_k^2\}) - y_2\| \leqslant 2^{-N}$. Let $y_1^j (1 \leqslant j \leqslant 2^N)$ denote the part of the sum $\sigma_f(\Gamma_1, \{x_k^1\})$, corresponding to the segments, whose right endpoints are less than $j/2^N$, and the left endpoints are greater than $(j-1)/2^N$. Then

$$\left\|\sum_{j=1}^{2^{N}} y_{j}^{j} - \sigma\left(\Gamma_{1}, \{x_{k}^{1}\}\right)\right\| \leq 2^{N} \cdot k \cdot 2^{-2N} = \frac{k}{2^{N}}.$$

We introduce vectors y_2^j in the same manner. The following inequality is fulfilled for them:

$$\left\|\sum_{j=1}^{2^N} y_2^j - \sigma(\Gamma_2, \{x_k^2\})\right\| \leq \frac{k}{2^N}$$

Let $\{\xi_j\}_1^{2^N}$ be a set of signs such that

$$\left\|\sum_{j=1}^{2^N} \frac{y_1^j - y_2^j}{2} \,\xi_j\right\|^p \leqslant C \sum_{j=1}^{2^N} \left\|\frac{y_1^j - y_2^j}{2}\right\|^p \,\leqslant C \sum_{j=1}^{2^N} \left(\frac{k}{2^{N+1}}\right)^p = \frac{C \cdot k^p}{2^p \cdot 2^{(p-1)N}}$$

Rostov Civil-Engineering Institute. Translated from Matematicheskie Zametki, Vol. 35, No. 2, pp. 161-167, February, 1984. Original article submitted February 8, 1983.

Let us construct a partition Γ_3 , finer than 2^{-N} , and select points $\{x_k^3\}$, such that if $\xi_j = \pm 1$, then the partition Γ_3 coincides with Γ_1 and x_k^3 coincides with x_m^1 on the segment $((j-1)/2^N;$ $j/2^N)$ and if $\xi_j = -1$, then Γ_3 and $\{x_k^3\}$ coincide with Γ_2 and $\{x_k^2\}$ respectively on this segment. Then

$$\left\|\sigma_{f}(\Gamma_{3}, \{x_{k}^{3}\}) - \frac{1}{2} \sum_{j=1}^{2^{N}} (y_{1}^{j} + y_{2}^{j})\right\| \leq \frac{k}{2^{N}} + \left\|\sum_{j=1}^{2^{N}} \xi_{j} \frac{y_{1}^{j} - y_{2}^{j}}{2}\right\| \leq \frac{k}{2^{N}} + \left(\frac{c \cdot k^{p}}{2^{p} \cdot 2^{(p-1)N}}\right)^{1/p}.$$

Consequently,

$$\left\|\sigma_{f}(\Gamma_{3}, \{x_{k}^{3}\}) - \frac{y_{1} + y_{2}}{2}\right\| \leqslant \frac{1}{2^{N}} + 2\frac{k}{2^{N}} + \left(\frac{c \cdot k^{\mathcal{P}}}{2^{\mathcal{P}} \cdot 2^{(\mathcal{P}-1)N}}\right)^{1/p}$$

The right-hand side of the last inequality converges to zero as $N \to \infty$. Consequently, $(y_1 + y_2)/2 \in \mathcal{J}(f)$. Since $\mathcal{J}(f)$ is closed, it follows that it is a convex set. The theorem is proved.

Now, we begin with the construction of a function with nonconvex set of limit points of the Riemann sums. We fix $\varepsilon = 10^{-6}$; and introduce in our consideration the function $\Psi(t)$, the distance of t from the nearest integral point, which is defined on the whole axis. We select two denumerable families of points on the segment [0, 1]: $T^1 = \bigcup_{n=1}^{\infty} T^1_n$ and $T^2 = \bigcup_{n=1}^{\infty} T^2_n$, where $T^j_n = \{t^j_{n,k}\}$ $(j = 1, 2; 1 \le k \le 2^n)$ is the set of roots of the equation

$$\frac{1}{2^n} \Psi\left(2^n \cdot t\right) = \frac{\sqrt{i+1}}{4^n} \cdot \epsilon^2$$

that lie on the segment [0, 1]. Let us observe that the sets T_n^j are pairwise disjoint. Let e(1), e(2), . . . denote the unit vectors of the canonical basis of the space l_1 and let us define the desired function g(t) from [0, 1] into l_1 in the following manner:

$$g(t) = \begin{cases} e(1) & \text{for} \quad t \notin T^{1} \bigcup T^{2}, \\ e(2) + \left[e(2^{n+1} + 2k) - \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} e(2^{n+1} + 2i) \right] \\ & \text{for} \quad t = t_{n,k}^{1}, \\ e(3) + \left[e(2^{n+1} + 2k - 1) - \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} e(2^{n+1} + 2i - 1) \right] \\ & \text{for} \quad t = t_{n,k}^{2}. \end{cases}$$

THEOREM 2. J(g) is not a convex set.

<u>Proof.</u> If we take the partition of the segment [0, 1] into 2^n equal segments as Γ and the points $t_{n,k}^1$ as x_k , then

$$\sigma_{g}(\Gamma, \{x_{j}\}) = \frac{1}{2^{n}} \sum_{j=1}^{2^{n}} \left[e(2) + e(2^{n+1} + 2j) - \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} e(2^{n+1} + 2i) \right] = e(2).$$

Consequently, $e(2) \in \mathcal{J}(g)$. Analogously, $e(3) \in \mathcal{J}(g)$. But, as we now show, $[e(2) + e(3)]/2 \notin \mathcal{J}(g)$. Indeed, suppose that for a certain partition Γ and a certain choice of $\{x_j\}$ we have

$$\left\|\sigma_{g}\left(\Gamma, \{x_{j}\}\right) - \frac{e\left(2\right) + e\left(3\right)}{2}\right\| \leqslant \varepsilon^{2}.$$

Let us represent $\sigma_g(\Gamma, \{x_k\}) = \Sigma g(x_k) \Delta_k$ in the form

$$\sum_{1} g(x_k) \Delta_k + \sum_{2} g(x_k) \Delta_k + \sum_{3} g(x_k) \Delta_k,$$

where the first sum is formed from all those terms for which $x_k \in T^1$, and the second sum is formed from all those terms for which $x_k \in T^2$, and the sum Σ_3 is formed from all those terms for which $x_k \notin T^1 \cup T^2$. We get

$$\varepsilon^{2} \geq \left\| \sigma_{g}\left(\Gamma, \left\{x_{k}\right\}\right) - \frac{e\left(2\right) + e\left(3\right)}{2} \right\| = \left\| \sum_{3} g\left(x_{k}\right) \Delta_{k} \right\| + \left\| \frac{e\left(2\right)}{2} - \sum_{1} g\left(x_{k}\right) \Delta_{k} \right\| + \left\| \frac{e\left(3\right)}{2} - \sum_{1} g\left(x_{k}\right) \Delta_{k} \right\|.$$

Consequently, $\Sigma_3 \Delta_k \leqslant \epsilon^2$;

$$\frac{e\left(2\right)}{2} - \sum_{1} g\left(x_{k}\right) \Delta_{k} \left\| \leqslant \varepsilon^{2}; \quad \left\| \frac{e\left(3\right)}{2} - \sum_{2} g\left(x_{k}\right) \Delta_{k} \right\| \leqslant \varepsilon^{2}$$

Now, we investigate the sum \sum_{i} separately. Let us represent \sum_{i} in the form $\sum_{i}^{n} g(x_{k}) \Delta_{k} + \sum_{i}^{2} g(x_{k}) \Delta_{k} + \dots + \sum_{i}^{n} g(x_{k}) \Delta_{k}$, where all the terms for which $x_{k} \in T_{m}^{1}$ occur in \sum_{i}^{m} . Let the set of m such that $\sum_{i}^{m} \Delta_{k} \neq 0$ be denoted by A. Then

$$\begin{split} \left\| \sum_{1} g(x_{k}) \Delta_{k} - \frac{e(2)}{2} \right\| &= \left\| \sum_{1} \Delta_{k} e(2) - \frac{e(2)}{2} + \sum_{n \in A} \sum_{1}^{n} \left[g(x_{k}) - e(2) \right] \Delta_{k} \right\| = \\ &= \left| \frac{1}{2} - \sum_{1} \Delta_{k} \right| + \sum_{n \in A} \left\| \sum_{1}^{n} \left[g(x_{k}) - e(2) \right] \Delta_{k} \right\|. \end{split}$$

Consequently,

$$\left\|\frac{1}{2} - \sum_{i} \Delta_{k}\right\| + \sum_{n \equiv A} \left\|\sum_{i}^{n} \left[g\left(x_{k}\right) - e\left(2\right)\right] \Delta_{k}\right\| \leq \varepsilon^{2}.$$
(1)

Let B denote the set of those $n \in A$ for which

$$\left\|\sum_{1}^{n}\left[g\left(x_{k}\right)-e\left(2\right)\right]\Delta_{k}\right\| > \varepsilon \cdot \sum_{1}^{n}\Delta_{k}$$

It follows from the inequality (1) that $\sum_{n \in B} \sum_{i=1}^{n} \Delta_k < \varepsilon$. Let C denote the set $A \setminus B$. The following inequalities are fulfilled:

$$\sum_{n \in C} \sum_{k=1}^{n} \Delta_{k} > \frac{1}{2} - \varepsilon - \varepsilon^{2}, \qquad (2)$$

$$\left\|\sum_{1}^{n} \left[g\left(x_{k}\right) - e\left(2\right)\right] \Delta_{k}\right\| \leqslant \varepsilon \sum_{1}^{n} \Delta_{k} \quad \text{(for all } n \in C\text{)}.$$
(3)

Let $R_1(n)$ be equal to 2^n minus the number of terms in the sum Σ_1^n . We will define the function $R_1(n)$ only for $n \in C$. The inequality (3) can be rewritten in the following form: For all $n \in C$.

$$\sum_{1}^{n} \left| \Delta_{k} - \frac{1}{2^{n}} \sum_{1}^{n} \Delta_{j} \right| + R_{1}(n) \cdot \frac{1}{2^{n}} \sum_{1}^{n} \Delta_{j} \leqslant \varepsilon \sum_{1}^{n} \Delta_{j}.$$

$$\tag{4}$$

It follows from (4) that for all $n \in C$, at least $(1 - \varepsilon) \cdot 2^n$ elements of \mathbb{T}_n^1 "occur" as x_k in the sum $\sum_{k=1}^{n} g(x_k) \Delta_k$.

Now, let us recall how the set T_n^1 is constituted. This set consists of 2^n points of the segment [0, 1] such that a point of the set T_n^1 is situated at a distance $4^{-n}\epsilon^2\sqrt{2}$ on the left and on the right of each point of the form $k/2^{n-1}$, i.e., each point of the form $k/2^{n-1}$ is squeezed between two points of the set T_n^1 .

Let $n \in C$, and m > n. A segment (a_k, b_k) from \sum_1^m will be said to be squeezed between points from \sum_1^n , if there exist two points x_r and x_j in \sum_1^n such that $x_r \leqslant a_k < b_k \leqslant x_j$, and $\|x_r - x_j\| = 2 \cdot 4^{-n} \cdot \epsilon^2 \cdot \sqrt{2}$. The total length of the segments from $\sum_{m>n} \sum_1^m$ that are squeezed between the points x_k from \sum_1^n does not exceed $2^n \cdot 4^{-n} \cdot \epsilon^2 \cdot \sqrt{2} = 2^{-n} \epsilon^2 \sqrt{2}$. Therefore, the total length of all the "squeezed" segments is less than $\sum_{n \in C} 2^{-n} \epsilon^2 \sqrt{2} < 2\epsilon^2$. Let us combine all the nonsqueezed segments from \sum_1^n for all n into a sum and denote it by $\sum_{1, n}$. Since the total length of the segments that belong to $\sum_{n \in C} \sum_{1}^n$, but do not belong to $\sum_{n \in C} \sum_{1, n}$, does not exceed $2\epsilon^2$, it follows from (1) that

$$\sum_{n \in \mathcal{C}} \left\| \sum_{1, n} \left[g\left(x_{k} \right) - e\left(2 \right) \right] \Delta_{k} \right\| \leqslant 10\varepsilon^{2}, \tag{5}$$

and it follows from (2) that

$$\sum_{n \in C} \sum_{1, n} \Delta_k > \frac{1}{2} - \varepsilon - \varepsilon^2 - 2\varepsilon^2.$$
(6)

Let C_1 denote the set of all $n \in C$ such that

$$\left\|\sum_{1,n} \left[g\left(x_{k}\right) - e\left(2\right)\right] \Delta_{k}\right\| \leqslant \epsilon \sum_{1,n} \Delta_{k}.$$
(7)

In the same way as we have obtained (2) from (1), we get the following inequality from (5) and (6):

$$\sum_{n \in C_1} \sum_{1, n} \Delta_j > \frac{1}{2} - 15 \cdot \varepsilon = 3 \cdot \varepsilon^2.$$

Let us define $R_2(n)$ as 2^n minus the number of terms in the sum $\Sigma_{1,n}$. Analyzing the inequality (7) in the same manner as we have analyzed the inequality (3) earlier, we get

$$R_2(n) \leqslant \varepsilon \cdot 2^n \tag{8}$$

for all $n \in C_1$. Let N denote max $\{n: n \in C_1\}$. We prove that the sum $\sum_{1} g(x_k) \Delta_k$ is practically equal to the sum $\sum_{1, N} g(x_k) \Delta_k$.

Let n < N and $n \in C_1$. At least $2^n (1 - 2\varepsilon)$ points of T_N^1 are squeezed between the points from $\Sigma_{1,n}$. Since all the "squeezed" segments have been deleted from $\sum_{1,N}$ it follows that $R_2(N) \ge 2^n (1 - 2\varepsilon)$. Hence from (8) we get

$$2^{N} \frac{\varepsilon}{1 - 2\varepsilon} \geqslant 2^{n}.$$
⁽⁹⁾

We decompose $\sum_{n \in C_1 \setminus \{N\}} \sum_{i, n} \Delta_j$ into two sums: \sum^i and \sum^2 . In \sum^i we combine all the "small" segments (such that $\Delta_j < \frac{1}{2^{N-2}}$), and in \sum^2 we combine the remaining ones (i.e., "large" segments). From (9) we get

$$\sum_{n \in C_{1 \setminus \{N\}}} \sum_{I_{1,n}} \frac{1}{2^{N-2}} < 2^{N} \frac{\varepsilon}{1-2\varepsilon} \frac{2}{2^{N-2}} < 10\varepsilon.$$

$$(10)$$

Each segment of length Δ_j from \sum^2 covers at least $\Delta_j \cdot 2^{N-1}$ points of T_N^1 . Therefore, $R_2(n) \ge \frac{1}{2} 2^N \sum^2 \Delta_j$. It follows from (8) that $\sum^2 \Delta_j < 2\epsilon$. Hence it follows from (10) that $\sum^1 \Delta_j + \sum^2 \Delta_j < 12\epsilon$. Consequently, $\sum_{i,N} \cdot \Delta_j > \frac{1}{2} - 30\epsilon$, i.e., \sum_i is practically equal to the sum $\sum_{i,N}$.

In the same manner, we can introduce the sums $\Sigma_{2,n}$ and in exactly the same manner we can show that Σ_2 is practically equal to the sum $\Sigma_{2,M}$. Let N > M. In the same manner as the above arguments, we get

$$2^M \leqslant \frac{\varepsilon}{1-2\varepsilon} 2^N$$
 and $\sum_{2, M} \Delta_k < 12\varepsilon$.

This is a contradiction. Consequently, $[e\ (2) + e\ (3)]/2 \notin \mathcal{J}\ (g)$. The theorem is proved.

LITERATURE CITED

 I. Halperin and N. Miller, "An inequality of Steinitz and the limits of Riemann sums," Trans. R. Soc. Can., <u>48</u>, 27-29 (1954).