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Let there be given a bounded function f from the segment [0, i] into a Banach space 
and suppose that F is a partition of this segment by the points ak and bk: 

0 = a 1 < b l  = a f <  b2 . . . .  <l~N = i .  

In each interval (~j, bj) we select a point xj. The vector from X that is equal to ~,Nf(.z'j) Aj, 

where Aj -- bj -- aj , is called the Riemann sum ~I (F, {xj}), corresponding to the given function 
f, the given partition F, and the selected set (xj}. We will say that a partition F is 

finer than E if Aj<e for arbitrary j. A point y ~ X is called a limit power of the Rie- 
mann sums of f if for each s > 0 there exist a partition F that is finer than c and a set 
of points (xj} such that [[ of (F, {xj}) -- y [I ~ e. Let us denote the set of all limit points of 
the Riemann sums of the function f by J (]). If X is the real axis, then J (/) is the segment 
joining the lower and the upper Riemann integrals of f. As proved in [1], if X is a finite- 
dimensional space or a Hilbert space, then J (]) is a convex set. 

The aim of the present article is, in the first place, to extend the result of [I] to 
B-convex Banach spaces and, secondly, to give an example of a bounded function g from the 
segment [0, I] into the space 71 such that J (g) is not a convex set. 

We will say that a Banach space Y has type p with a constant C if for each set of vec- 
tors Yl, Yf,. �9 Yn ~ Y there exists a set of numbers ~1, ~2,. �9 ~n = :~i such that 

s 
n P n 

A Banach space is said to be B-convex if it has type p > I. For example, all spaces Lp for 
1 < p < ~ are B-convex. 

THEOREM i. Let a Banach space Y have type p > i with a constant C. Let a function 

/: [0; I]-+Y be such that IIf(x) i] ~k<.. o o  for each x in its domain. Then J (]) is a convex 
set. 

Proof. Let yz and y2 belong to J (]). We prove that (y~ -~- y2)/2 ~ J (/). Let there be given 
an N > Io We select partitions FI and Ff, finer than 2 -fN, and point sets {x~} and {x~}, such 

that II al(F~ {x~})-- yiII • 2-N and H ~f (Ff, {x~})-- Y2 II < 2-N. Let y{ (i <]< 2 N) denote the part 

of the sum ~f (FI, {x~}), corresponding to the segments, whose right endpoints are less than 
j/2 N, and the left endpoints are greater than (j -- I)/fN. Then 

y~ -- ~(r~,  {x~}) %21V.k .2  -fN = 2 ~ .  

We introduce vectors y~ in the same manner. The following inequality is fulfilled for them: 

Let {~j}~N be a set of signs such that 

y z N  J J p a..mzN , yj yj jV [ k ~p C.kP 
2 ~2 ~v+l ] -~-- _ 2 p.  2(p-~)lV �9 
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X 3 Let us construct a partition P~, finer than 2 -N, and select points { ~}~ such that if ~j = +i, 

then the partition Pa coincides with ~ and x~ coincides with x~m on the segment ((]- i)/iN; 
]/2 N) and if ~i =--i, then Fa and {x~} coincide with F~ and {x~} respectively on this 

segment. Then 

{x:}) & v  + -< - -  2Po  v ( P - 1 ) N  �9 

C o n s e q u e n t l y ,  

" ~ - + 2 - 2 ~ +  2p.7~n)~] - 

The r i g h t - h a n d  s i d e  o f  t h e  l a s t  i n e q u a l i t y  c o n v e r g e s  t o  z e r o  a s  N + ~.  C o n s e q u e n t l y ,  (yl 
g~)/2 ~ ~ (J). Since ~ (f) is closed, it follows that it is a convex set. The theorem is 
proved. 

Now, we begin with the construction of a function with nonconvex set of limit points 

of the Riemann sums. We fix e = 10:a; and introduce in our consideration the function P(t), 
the distance of t from the nearest integral point, which is defined on the whole axis. We 

select two denumerable families of points on the segment [0, i]: T ~ = ~  ~n=~Tn~ and T~--~ ~n=~ ~ 

T$, where T~ = {t~.~} (] = I, 2; i ~ k ~,~ 2 n) is the set of roots of the equation 

~ ( i n . t ) _ _  g 9 t e: 
. 

that lie on the segment [0, l]. Let us observe that the sets T~ are pairwise disjoint. 
Let e(1), e(2), denote the unit vectors of the canonical basis of the space ~I and 
let us define the desired function g(t) from [0, i] into ~ in the following manner: 

THEOREM 2. 

Proof. 

the points 

g (t)  = 

e ( l )  for t ~ T  ~ T ~, 
a n 

for t ~ tln, k, 
1 , n  

e(3)q- [e(2 T M  q- 2 k - -  1) - -  - :2r~h=te(2~+Kq-2i-- t )]  

for * -  t 2 

J (g) is not a convex set. 

If we take the partition of the segment [0, i] 

t I ~,~ asx k, then 

l e ( 2 ) - b e  } 2j) - -  oe  (r ,  {x  j}) ~ - ~  =1 L - -1  

into 2 n equal segments as F and 

e (2 ~§ q- 2i) ] == e (2). 

C o n s e q u e n t l y ,  e (2) ~ ~7 (g). A n a l o g o u s l y ,  e (3) ~ 2] (g). B u t ,  a s  we now show,  [e (2) q- e (3)]/2 ~ J (g). 
I n d e e d ,  s u p p o s e  t h a t  f o r  a c e r t a i n  p a r t i t i o n  P and  a c e r t a i n  c h o i c e  o f  {xj} we h a v e  

(~ (P, {x~}) - -  ~ (2) +2 e (3) ~ e~" 

Let us represent ~g (F, {xl~.}) = Eg (xl~)A~. in the form 

where the first sum is formed from all those terms for which x~ ~ T I, and the second sum is 
formed from all those terms for which x~, ~ T ~, and the sum E3 is formed from all those terms 
for which x~ ~ T I U T~. We get 

s 2 ~ (? ,  {xk})  ~ (2) + ~ (3) g ( x D  A~ T 
2 a 

2.  Consequently, Y.3AI. ~ 8 , 
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e (2) e (3) ~ ~ .  
2 

1 

Now, we investigate the sum ~ separately. Let us represent ~ in  the form ~ g ( x ~ , . ) A ~ - [ -  

g (x,~)A,~ -~.. ~- E, g(x~,)A~, where all the terms for which zI~T~ occur in ~'~. Let the set 

of m such that ~i Ak~=0 be denoted by A. Then 

E1 g(m~')A~" - - ~  ---~ !', A'~e(2) e(12)-}- E .~  E7 [g(x~')--e(2)]A~ : 

~[+--  E,A'~']-i 2 , , < = ,  E [  [g (x") --<e (2)] A~l " 

Consequently, 

(1) 

Let B denote the set of those n ~A for which 

n 

It follows from the inequality (I) that ~,nc=B~,~A~<e. Let C denote the set 

lowing inequalities are fulfilled: 

A\B. The fol- 

~ n A  -- E -- En~CLI h''l / - ~  32 '  (2) 

Let R I (n) be equal to 2 n minus the number of terms in the sum E~. We will define the func- 

tion R1(n) only for n ~ C. The inequality (3) can be rewritten in the following form: For 
all n~C 

" I ~ I ~ s n A j .  
A ~ . - - T v  IAJ -~:/~l(n).~r . 1 (4) 

i It follows from (4) that for all n ~ C, at least (I -- s)'2 n elements of T n "occur" as x k in 
n 

the sum ~]g(x~.)A~ . 

. 1 Now, l e t  u s  r e c a l l  how t h e  s e t  T n i s  c o n s t i t u t e d .  T h i s  s e t  c o n s i s t s  o f  2 n p o i n t s  o f  
1 n 2 the segment [0, 1] such that a point of the set T is situated at a distance 4-e ~2 on the 

l e f t  and  on t h e  r i g h t  o f  e a c h  p o i n t  o f  t h e  f o r m  nk/27~-~ , i . e . ,  e a c h  p o i n t  o f  t h e  f o r m  k/2 ~-L 
1 is squeezed between two points of the set T n- 

7~ 
L e t  n ~ C ,  and  m > n~ A s e g m e n t  (a~,bl~) f r o m  ~1 w i l l  be  s a i d  t o  be  s q u e e z e d  b e t w e e n  

points from "~i' if there exist two points x r and xj in ~i suchthat zr~a~b~zj, and 

!IXr --xjIl~-2"4-n'e2"]/"~'The total length of the segments from ~'m>n'~1 that are squeezed be- 

tween the points x k from ~ does not exceed 27~.4-n.e2.F2":2-ne2Fg. Therefore, the total 

l e n g t h  o f  a l l  t h e  " s q u e e z e d "  s e g m e n t s  i s  l e s s  t h a n  ~n~c2-ne21/~-~2e%. L e t  u s  c o m b i n e  a l l  
n 

the nonsqueezed segments from ~'i for all n into a sum and denote it by ~, n" Since the total 
n 

length of the segments that belong to ~n~o~, but do not belong to ~n~c~'Ln' does not 

e x c e e d  2s 2, i t  f o l l o w s  f r o m  (1) t h a t  

~ '~-c  II ~'L ~ [g (x~.) - -  e (2)] A~. [! ~< t0e% (5) 
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and it follows from (2) that 

E s "x t 82 28~. 
n ~ c  ~,*~A~/T--8-- - -  (6) 

Let Cl denote the set of all e~ C such that 

i ~ ,  n [g (x~) - -  e (2)] A~ H < e ~ ,  ,~ A~.. (7) 

In the same way as we have obtained (2) from (i), we get the following inequality from (5) 
and (6) : 

E X A J > +  - 1 5 " s -  3"s2" 
n~_C~ '1, n 

Let us define /~2 (n) as 2 n minus the number of terms in the sum Ya, n- Analyzing the inequal- 
ity (7) in the same manner as we have analyzed the inequality (3) earlier, we get 

R2 (n) < e-2 ~ (8)  

for all n ~C I . Let N denote max {n: n ~ CI}. We prove that the sum ~ig(x~)A~ is practically 
equal to the sum ~l, Xg(x~)A~. 

I are squeezed between the points Let n < N and n~ Cp At least 2n (i -- 2s) points of T N 

from E1,n. Sinceall the "squeezed" segments have been deleted from ~I.N it follows that 

R2 (N),> 2 n (I -- 2@ Hence from (8) we get 

2 N 8 2 n. (9) 

?Z , ~1 
We decompose ~'n~C~N{Nl~'~. Aj into two sums: ~1 and ~ In we combine all the "small" 

I ) s e g m e n t s  ( s u c h  t h a t  A j ~  2--~-~ , and  i n  we c o m b i n e  t h e  r e m a i n i n g  o n e s  ( i . e . ,  " l a r g e "  s e g -  

m e n t s ) .  F rom (9)  we g e t  

E' s s A~.~  l / 2  N ~ 2 -"" lOe. 
" n ~ C ,  x l N }  i ,  n '2 N - 2  ~ "  " 1 - - 2 e  2 N- '~  ~ "  

(lo) 

Each segment of length Aj from ~2 l Therefore R~(n)~ covers at least Aj.2 N-I points of T N. 

--I 2N~,2 Aj. It follows from (8) that ~,2Aj~28. Hence it follows from (i0) that ~Aj-I-~, 2 
2 

~ . l , l v . A j ~ T _ 3 0  e t  Consequently, , i.e., ~1 is practically equal to the sum A j ~  t2e. 

~ 
1, N " 

I n  t h e  same m a n n e r ,  we c a n  i n t r o d u c e  t h e  sums E~,n a n d  i n  e x a c t l y  t h e  same m a n n e r  we 
c a n  show t h a t  ~ i s  p r a c t i c a l l y  e q u a l  t o  t h e  sum E2, M. L e t  N > M. I n  t h e  same m a n n e r  a s  
the above arguments, we get 

This is a contradiction. Consequently, [e (2) F e (3)]/2 ~ J (g). The theorem is proved. 

i. 
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