V. M. Kadets and M. I. Kadets

Let there be given a bounded function from the segment [0, 1] into a Banach space and suppose that Γ is a partition of this segment by the points α_{k} and b_{k} :

$$
0=a_{1}<b_{1}=a_{2}<b_{2}=\ldots<b_{N}=1 .
$$

In each interval $\left(\alpha_{j}, b_{j}\right)$ we select a point x_{j}. The vector from X that is equal to $\sum_{1}^{N} f\left(x_{j}\right) \Delta_{j}$, where $\Delta_{j}=b_{j}-a_{j}$, is called the Riemann sum $\sigma_{f}\left(\Gamma,\left\{x_{j}\right\}\right)$, corresponding to the given function f, the given partition Γ, and the selected set $\left\{\mathrm{x}_{\mathrm{j}}\right\}$. We will say that a partition Γ is finer than ε if $\Delta_{j}<\varepsilon$ for arbitrary j. A point $y \leqslant X$ is called a limit power of the Riemann sums of f if for each $\varepsilon>0$ there exist a partition Γ that is finer than ε and a set of points $\left\{\mathrm{x}_{\mathrm{j}}\right\}$ such that $\left\|\sigma_{f}\left(\Gamma,\left\{x_{j}\right\}\right)-y\right\| \leqslant \varepsilon$. Let us denote the set of all limit points of the Riemann sums of the function f by $\mathscr{J}(f)$. If X is the real axis, then $\mathscr{J}(f)$ is the segment joining the lower and the upper Riemann integrals of f. As proved in [1], if X is a finitedimensional space or a Hilbert space, then $J(f)$ is a convex set.

The aim of the present article is, in the first place, to extend the result of [1] to B-convex Banach spaces and, secondly, to give an example of a bounded function g from the segment $[0,1]$ into the space \mathcal{Z}_{1} such that $\mathscr{I}(g)$ is not a convex set.

We will say that a Banach space Y has type p with a constant C if for each set of vectors $y_{1}, y_{2}, \ldots, y_{n} \in Y$ there exists a set of numbers $\xi_{1}, \xi_{2}, \ldots, \xi_{n}= \pm 1$ such that

$$
\left\|\sum_{k=1}^{n} \xi_{k} y_{k}\right\|^{p} \leqslant C \sum_{k=1}^{n}\left\|y_{k}\right\|^{p}
$$

A Banach space is said to be B-convex if it has type $p>1$. For example, all spaces L_{p} for $1<p<\infty$ are B-convex.

THEOREM 1. Let a Banach space Y have type $p>1$ with a constant \mathcal{C}. Let a function $f:[0 ; 1] \rightarrow Y$ be such that $\|f(x)\| \leqslant k<\infty$ for each x in its domain. Then $\mathscr{Y}(f)$ is a convex set.

Proof. Let y_{1} and y_{2} belong to $\mathscr{I}(f)$. We prove that $\left(y_{1}+y_{2}\right) / 2 \in \mathscr{y}(f)$. Let there be given an $N>1$. We select partitions Γ_{1} and Γ_{2}, finer than $2^{-2 N}$, and point sets $\left\{x_{k}^{1}\right\}$ and $\left\{x_{k}^{2}\right\}$, such that $\left\|\sigma_{f}\left(\Gamma_{1},\left\{x_{k}^{1}\right\}\right)-y_{1}\right\| \leqslant 2^{-N}$ and $\left\|\sigma_{f}\left(\Gamma_{2},\left\{x_{k}^{2}\right\}\right)-y_{2}\right\| \leqslant 2^{-N}$. Let $y_{1}^{j}\left(1 \leqslant j \leqslant 2^{N}\right)$ denote the part of the sum $\sigma_{i}\left(\Gamma_{1},\left\{x_{k}^{1}\right\}\right)$, corresponding to the segments, whose right endpoints are less than $j / 2^{N}$, and the left endpoints are greater than $(j-1) / 2^{N}$. Then

$$
\left\|\sum_{j=1}^{2^{N}} y_{1}^{j}-\sigma\left(\Gamma_{1},\left\{x_{k}^{1}\right\}\right)\right\| \leqslant 2^{N} \cdot k \cdot 2^{-2 N}=\frac{k}{2^{N}} .
$$

We introduce vectors y_{2}^{j} in the same manner. The following inequality is fulfilled for them:

$$
\left\|\sum_{j=1}^{2^{N}} y_{2}^{j}-\sigma\left(\Gamma_{2},\left\{x_{k}^{2}\right\}\right)\right\| \leqslant \frac{k}{2^{N}} .
$$

Let $\left\{\hat{\mathrm{G}}_{j}\right\}_{1}^{2 N}$ be a set of signs such that

$$
\left\|\sum_{j=1}^{2^{N}} \frac{y_{1}^{j}-y_{2}^{j}}{2} \xi_{j}\right\|^{p} \leqslant C \sum_{j_{b=1}}^{2^{N}}\left\|\frac{y_{1}^{j}-y_{2}^{j}}{2}\right\|^{p} \leqslant C \sum_{j=1}^{2^{N}}\left(\frac{k}{2^{N+i}}\right)^{p}=\frac{C \cdot k^{p}}{2^{p} \cdot 2^{(p-1) N}}
$$

Let us construct a partition Γ_{3}, finer than 2^{-N}, and select points $\left\{x_{k}^{3}\right\}$, such that if $\xi_{j}=+1$, then the partition Γ_{3} coincides with Γ_{1} and x_{h}^{3} coincides with x_{m}^{1} on the segment $\left((j-1) / 2^{N}\right.$; $j / 2^{N}$) and if $\xi_{j}=-1$, then Γ_{3} and $\left\{x_{h}^{3}\right\}$ coincide with Γ_{2} and $\left\{x_{k}^{2}\right\}$ respectively on this segment. Then

$$
\left\|\sigma_{f}\left(\Gamma_{3},\left\{x_{k}^{3}\right\}\right)-\frac{1}{2} \sum_{j=1}^{2^{n}}\left(y_{1}^{j}+y_{2}^{j}\right)\right\| \leqslant \frac{k}{2^{N}}+\left\|\sum_{1}^{2^{N}} \xi_{j} \frac{y_{1}^{j}-y_{2}^{j}}{2}\right\| \leqslant \frac{k}{2^{N}}+\left(\frac{c \cdot k^{p}}{2^{p} \cdot 2^{p p-1) N}}\right)^{1 / p} .
$$

Consequently,

$$
\left|\left|\sigma_{f}\left(\Gamma_{3},\left\{x_{k}^{3}\right\}\right)-\frac{y_{1}+y_{2}}{2}\right| \leqslant \frac{1}{2^{N}}+2 \frac{k}{2^{N}}+\left(\frac{c \cdot k^{p}}{2^{p} \cdot 2^{(p-1) N}}\right)^{1 / p} .\right.
$$

The right-hand side of the last inequality converges to zero as $N \rightarrow \infty$. Consequently, $\left(y_{1}+\right.$ $\left.y_{2}\right) / 2 \in \mathscr{y}(f)$. Since $y(f)$ is closed, it follows that it is a convex set. The theorem is proved.

Now, we begin with the construction of a function with nonconvex set of limit points of the Riemann sums. We fix $\varepsilon=10^{-5}$; and introduce in our consideration the function $\Psi(t)$, the distance of t from the nearest integral point, which is defined on the whole axis. We select two denumerable families of points on the segment [0, 1]: $T^{1}=\bigcup_{n=1}^{\infty} T_{n}^{1}$ and $T^{2}=\bigcup_{n=1}^{\infty}$ T_{n}^{2}, where $T_{n}^{j}=\left\{t_{n, k}^{j}\right\}\left(j=1,2 ; 1 \leqslant k \leqslant 2^{n}\right)$ is the set of roots of the equation

$$
\frac{1}{2^{n}} \Psi\left(2^{n} \cdot t\right)=\frac{\sqrt{i+1}}{4^{n}} \cdot \varepsilon^{2}
$$

that lie on the segment $[0,1]$. Let us observe that the sets T_{n}^{j} are pairwise disjoint. Let $e(1), e(2)$, . . denote the unit vectors of the canonical basis of the space l_{1} and let us define the desired function $g(t)$ from $[0,1]$ into Z_{1} in the following manner:

$$
g(t)=\left\{\begin{array}{l}
e(1) \text { for } \quad t \notin T^{1} \cup T^{2}, \\
e(2)+\left[e\left(2^{n+1}+2 k\right)-\frac{1}{2^{n}} \sum_{i=1}^{2^{n}} e\left(2^{n+1}+2 i\right)\right] \\
e(3)+\left[e\left(2^{n+1}+2 k-1\right)-\frac{1}{2^{n}} \sum_{i=1}^{e^{n}} e\left(2^{n+1}+2 i-1\right)\right] \\
\\
\quad \text { for } t=t_{n, k}^{2} .
\end{array}\right.
$$

THEOREM 2. $J(g)$ is not a convex set.
Proof. If we take the partition of the segment [0, 1] into 2^{n} equal segments as T and the points $t_{n, k}^{1}$ as x_{k}, then

$$
\sigma_{g}\left(\Gamma,\left\{x_{j}\right\}\right)=\frac{1}{2^{n}} \sum_{j=1}^{2^{n}}\left[e(2)+e\left(2^{n+1}+2 j\right)-\frac{1}{2^{n}} \sum_{i=1}^{e^{n}} e\left(2^{n+1}+2 i\right)\right]=e(2)
$$

Consequently, $e(2) \models y(g)$. Analogously, $e(3) \in \mathscr{F}(g)$. But, as we now show, $[e(2)+e(3)] / 2 \notin y(g)$. Indeed, suppose that for a certain partition Γ and a certain choice of $\left\{x_{j}\right\}$ we have

$$
\left\|\sigma_{g}\left(\Gamma,\left\{x_{j}\right\}\right)-\frac{e(2)+e(3)}{2}\right\| \leqslant \varepsilon^{2} .
$$

Let us represent $\sigma_{g}\left(\Gamma,\left\{x_{k}\right\}\right)=\Sigma g\left(x_{k}\right) \Delta_{k}$ in the form

$$
\Sigma_{1} g\left(x_{k}\right) \Delta_{k}+\Sigma_{2} g\left(x_{k}\right) \Delta_{k}+\Sigma_{3} g\left(x_{k}\right) \Delta_{k},
$$

where the first sum is formed from all those terms for which $x_{k} \in T^{1}$, and the second sum is formed from all those terms for which $x_{k} \in T^{2}$, and the sum Σ_{3} is formed from all those terms for which $x_{k} \notin T^{\perp} \cup T^{2}$. We get

$$
\varepsilon^{2} \geqslant\left\|\boldsymbol{\sigma}_{g}\left(\Gamma,\left\{x_{k}\right\}\right)-\frac{e(2)+e(3)}{2}\right\|=\left\|\sum_{3} g\left(x_{k}\right) \Delta_{k}\right\| \div\left\|\frac{e(2)}{2}-\sum_{1} g\left(x_{k}\right) \Delta_{k}\right\|+\left\|\frac{e(3)}{2}-\sum_{2} g\left(x_{k}\right) \Delta_{k}\right\| .
$$

Consequently, $\Sigma_{3} \Delta_{k} \leqslant \varepsilon^{2} ;$

$$
\frac{e(2)}{2}-\sum_{1_{1}} g\left(x_{k}\right) \Delta_{k}\left\|\leqslant \varepsilon^{2} ; \quad\right\| \frac{e(3)}{2}-\sum_{2} g\left(x_{k}\right) \Delta_{k} \| \leqslant \varepsilon^{2}
$$

Now, we investigate the sum \sum_{1} separately. Let us represent \sum_{1} in the form $\sum_{1}^{1} g\left(x_{k}\right) \Delta_{k}+$ $\sum_{1}^{2} g\left(x_{k}\right) \Delta_{k}+\ldots+\sum_{1}^{n} g\left(x_{k}\right) \Delta_{k}$, where all the terms for which $x_{k} \in T_{m}^{1}$ occur in \sum_{1}^{m}. Let the set of m such that $\sum_{i}^{m} \Delta_{k} \neq 0$ be denoted by A. Then

$$
\begin{gathered}
\left\|\sum_{1} g\left(x_{k}\right) \Delta_{k}-\frac{e(2)}{2}\right\|=\left\|\sum_{1} \Delta_{k} e(2)-\frac{e(2)}{2}+\sum_{i_{E A}} \sum_{1}^{n}\left[g\left(x_{k}\right)-e(2)\right] \Delta_{k}\right\|= \\
=\left|\frac{1}{2}-\sum_{1} \Delta_{k}\right|+\sum_{n \in A}\left\|\sum_{1}^{n}\left[g\left(x_{k}\right)-e(2)\right] \Delta_{k}\right\| .
\end{gathered}
$$

Consequently,

$$
\begin{equation*}
\left|\frac{1}{2}-\sum_{1} \Delta_{k}\right|+\sum_{n \equiv A}\left\|\sum_{1}^{n}\left[g\left(x_{k}\right)-e(2)\right] \Delta_{k}\right\| \leqslant \varepsilon^{2} \tag{1}
\end{equation*}
$$

Let B denote the set of those $n \Leftarrow A$ for which

$$
\left\|\Sigma_{1}^{n}\left[g\left(x_{k}\right)-e(2)\right] \Delta_{k}\right\|>\varepsilon \cdot \Sigma_{1}^{n} \Delta_{k} .
$$

It follows from the inequality (1) that $\sum_{n \in B} \sum_{1}^{n} \Delta_{k}<\varepsilon$. Let C denote the set $A \backslash B$. The following inequalities are fulfilled:

$$
\begin{gather*}
\sum_{n \in C} \sum_{1}^{n} \Delta_{k}>\frac{1}{2}-\varepsilon-\varepsilon^{2}, \tag{2}\\
\left.\left\|\sum_{1}^{n}\left[g\left(x_{k}\right)-e(2)\right] \Delta_{k}\right\| \leqslant \varepsilon \sum_{1}^{n} \Delta_{k} \quad \text { (for all } n \in C\right) \tag{3}
\end{gather*}
$$

Let $R_{1}(n)$ be equal to 2^{n} minus the number of terms in the sum Σ_{1}^{n}. We will define the function $R_{1}(n)$ only for $n \in C$. The inequality (3) can be rewritten in the following form: For all $n \in C$

$$
\begin{equation*}
\sum_{1_{1}}^{n}\left|\Delta_{k}-\frac{1}{2^{n}} \sum_{j_{1}}^{n} \Delta_{j}\right|+R_{1}(n) \cdot \frac{1}{2^{n}} \sum_{1}^{n} \Delta_{j} \leqslant \varepsilon \sum_{1}^{n} \Delta_{j} . \tag{4}
\end{equation*}
$$

It follows from (4) that for all $n \in C$, at least $(1-\varepsilon) \cdot 2^{n}$ elements of T_{n}^{1} "occur" as x_{k} in the sum $\sum_{1}^{n} g\left(x_{k}\right) \Delta_{k}$ 。

Now, let us recall how the set $\mathrm{T}_{\mathrm{n}}^{\mathrm{l}}$ is constituted. This set consists of 2^{n} points of the segment $[0,1]$ such that a point of the set T_{n}^{I} is situated at a distance $4^{-n} \varepsilon^{2} \sqrt{2}$ on the left and on the right of each point of the form ${ }^{n} k / 2^{n-1}$, i.e., each point of the form $k / 2^{n-1}$ is squeezed between two points of the set T_{n}^{1}.

Let $n \in C$, and $m>n$. A segment $\left(a_{k}, b_{k}\right)$ from \sum_{1}^{m} will be said to be squeezed between points from Σ_{1}^{n}, if there exist two points x_{r} and x_{j} in \sum_{1}^{n} such that $x_{r} \leqslant a_{k}<b_{k} \leqslant x_{j}$, and $\left\|x_{r}-x_{j}\right\|=2 \cdot 4^{-n} \cdot \varepsilon^{2} \cdot \sqrt{2}$. The total length of the segments from $\sum_{m>n} \cdot \sum_{1}^{m}$ that are squeezed between the points x_{k} from \sum_{1}^{n} does not exceed $2^{n} \cdot 4^{-n} \cdot \varepsilon^{2} \cdot \sqrt{2}=2^{-n} \varepsilon^{2} \sqrt{2}$. Therefore, the total length of all the "squeezed" segments is less than $\sum_{n=c} 2^{-n} \varepsilon^{2} \sqrt{2}<2 \varepsilon^{2}$. Let us combine all the nonsqueezed segments from Σ_{1}^{n} for all n into a sum and denote it by $\sum_{1, n}$. Since the total length of the segments that belong to $\sum_{n \equiv c} \Sigma_{1}^{n}$, but do not belong to $\sum_{n \in c} \Sigma_{1, n}$, does not exceed $2 \varepsilon^{2}$, it follows from (1) that

$$
\begin{equation*}
\sum_{n \in c}\left\|\sum_{1, n}\left[g\left(x_{k}\right)-e(2)\right] \Delta_{k}\right\| \leqslant 10 \varepsilon^{2}, \tag{5}
\end{equation*}
$$

and it follows from (2) that

$$
\begin{equation*}
\sum_{d_{n \equiv c}} \sum_{d_{1, n}} \Delta_{k}>\frac{1}{2}-\varepsilon-\varepsilon^{2}-2 \varepsilon^{2} \tag{6}
\end{equation*}
$$

Let C_{1} denote the set of all $n \in C$ such that

$$
\begin{equation*}
\left\|\sum_{1, n}\left[g\left(x_{k}\right)-e(2)\right] \Delta_{k}\right\| \leqslant \varepsilon \sum_{\mathbf{1}, n} \Delta_{h} \tag{7}
\end{equation*}
$$

In the same way as we have obtained (2) from (1), we get the following inequality from (5) and (6) :

$$
\sum_{n=C_{1}} \sum_{1, n} \Delta_{j}>\frac{1}{2}-15 \cdot \varepsilon-3 \cdot \varepsilon^{2} .
$$

Let us define $R_{2}(n)$ as 2^{n} minus the number of terms in the sum $\Sigma_{1, n}$. Analyzing the inequality (7) in the same manner as we have analyzed the inequality (3) earlier, we get

$$
\begin{equation*}
R_{2}(n) \leqslant \varepsilon \cdot 2^{n} \tag{8}
\end{equation*}
$$

for all $n \in C_{1}$. Let N denote $\max \left\{n: n \in C_{1}\right\}$. We prove that the sum $\sum_{1} g\left(x_{n}\right) \Delta_{k}$ is practically equal to the sum $\sum_{1, N} g\left(x_{k}\right) \Delta_{k}$.

Let $n<N$ and $n \in C_{1}$. At least $2 n(1-2 \varepsilon)$ points of T_{N}^{1} are squeezed between the points from Σ_{1}, n. Since all the "squeezed" segments have been deleted from $\Sigma_{1, N}$ it follows that $R_{2}(N)_{1} \geqslant 2^{n}(1-2 \varepsilon)$. Hence from (8) we get

$$
\begin{equation*}
2^{N} \frac{\varepsilon}{1-2 \varepsilon} \geqslant 2^{n} \tag{9}
\end{equation*}
$$

We decompose $\sum_{n \in C_{1} \backslash\{N\}} \sum_{1, n} \Delta_{j}$ into two sums: Σ^{1} and Σ^{2} 。In Σ^{1} we combine all the "smal1" segments (such that $\Delta_{j}<\frac{1}{2^{N-2}}$), and in Σ^{2} we combine the remaining ones (i.e., "large" segments). From (9) we get

$$
\begin{equation*}
\sum^{1} \Delta_{k}<\sum_{n \in C_{2} \backslash(N)} \sum_{1, n} \frac{1}{2^{N-2}}<2^{N} \frac{\varepsilon}{1-2 \varepsilon} \frac{2}{2^{N-2}}<10 \varepsilon \tag{10}
\end{equation*}
$$

Each segment of length Δ_{j} from Σ^{2} covers at least $\Delta_{j} \cdot 2^{N-1}$ points of $\mathrm{T}_{\mathrm{N}}^{1}$. Therefore, $R_{2}(n) \geqslant$ $\frac{1}{2} 2^{N} \Sigma^{2} \Delta_{j}$. It follows from (8) that $\sum^{2} \Delta_{j}<2 \varepsilon$. Hence it follows from (10) that $\sum^{1} \Delta_{j}+\Sigma^{2}$ $\Delta_{j}<12 \varepsilon$. Consequently, $\sum_{1, N} \cdot \Delta_{j}>\frac{1}{2}-30 \varepsilon$, i.e., \sum_{1} is practically equal to the sum $\sum_{1, N}$.

In the same manner, we can introduce the sums $\Sigma_{2, n}$ and in exactly the same manner we can show that Σ_{2} is practically equal to the sum $\Sigma_{2, M}$. Let $N>M$. In the same manner as the above arguments, we get

$$
2^{M} \leqslant \frac{\varepsilon}{1-2 \varepsilon} 2^{N} \text { and } \sum_{2, M} \Delta_{k}<12 \varepsilon
$$

This is a contradiction. Consequently, $[e(2)+e(3)] / 2 \notin \mathscr{Y}(g)$. The theorem is proved.

LITERATURE CITED

1. I. Halperin and N. Miller, "An inequality of Steinitz and the 1 imits of Riemann sums," Trans. R. Soc. Can., 48, 27-29 (1954).
