
Remark, According to I), we obtain a Lagrangian family {C~g-*} on the orbit ~ which en- 
ables us to apply the scheme of Sec. 2 to M = ~ and X = G/P. 

In contrast to the case of ordinary polarizations, the following theorem holds: 

THEOREM 4. Given any / ~ ~' , one can find a subalgebra p, such that ~,p) is a polar- 
izing pair. 

Now suppose that ~ is semisimple, 5=~+, is a Borel subalgebra, n~g is a nil- 
potent element, and (~: F'(G/B)--g . From Theorem 3 we derive: 

THEOREM 5. ' a) G.nN, is a Lagrangian manifold and the dimension of the components of 
the fiber ~-1(n) is dlmn--I/~.dimG.~ (see [4]). 

b) Every component of ~,1(G.n n ") is the closure of the conormal bundle of some Schubert 
cell. 
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TWO THEOREMS ON THE MASSIVENESS OF BOUNDARIES IN REFLEXIVE BANACH SPACES 

M. I. Kadets and V. P. Fonf UDC 517.98 

Let X be a reflexive Banach space. We shall say that a subset B of the unit sphere S(X) 
of X is a boundary (for the dual space X*) whenever 

Obviously, one of the boundaries is the set ext U(X) of extremal points of the unit ball U(X) 
of X. Generally speaking, however, a boundary does not necessarily contain all the extremal 
points [although it contains all the exposed points, expU(X)]. The theorem of Lindenstrauss 
and Phelps [I] asserting that the set of extremal points of the unit ball in a reflexive 
Banach space is not countable has stimulated a series of papers devoted to the investigation 
of the massiveness (in some sense or another) of this set ([2, 3]). One can show that a 
boundary also enjoys the same massiveness properties. 

The goal of this note is to discuss two new natural massiveness properties and prove 
that they are enjoyed by any boundary in a reflexive Banach space. 

Proposition I. Let X be a Banach space and BCS(X). Then the following are equivalent 
statements: 

(I) For any Banach space Y and any bounded linear operator T:Y + X such that T(Y)~B 
one has T(Y) = X. 

(II) For every representation of B as the union of an increasing series of sets, B = 

B i, (B~?), there is an index j such that 
1 

inf sup If(z) I > 0 ,  

(i.e., Bj is a norming set for X*). 

Proof. (I) (II). We proceed by reductio ad absurdum. Suppose that there is a 
representation B = UBi,BiT , such that none of the B i is norming. Set A1 = BI~ A i = B i\ Bi-i 
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(i - 2, 3,.,.), V - cl=0nv{~-IA~)~1. Let L be the linear manifold spanned by V, i,e., L~ ~ ,.F. 

Let us show that L = X. Since V is absolutely convex and closed, it suffices to verify that 
V contains no ball centered at zero. Let m > 0 and take j such that j-x < ¢. Since Bj is 
not a norming set, there exists a functional !aS(X*) such that aup[l(=)l<8. Using the defi- 

~sj 

nition of V, we get ~lf(z) l<~ , which i~plies that V does not contain the ball e.U(X). 

Let Y denote the linear space L with uni t ball V. From the fact that V is closed it 
follows that Y is a Banach space. Let T denote the natural embedding of Y (i.e., L) into X. 
It is readily seen that T is a bounded linear injection Y + X such that T(Y) DB, but T(Y) = 
L = X. This contradicts (I) and proves the implication (I) ~ (II). 

(II) ~ (I). Let T be a bounded linear operator from the Banach space Y into X, such 
that . Set Bit T(~.U(Y))I~H , i = I, 2, .... Obviously, {Bi} is an increasing se- 
quence with B= UB~. But then there is j such that 

inf sup I I (=) I = 6 > o, 
I~S(X*) x~Sj 

which implies immediately that el T (U (Y)) D 6OU (X). By Lemma 2 ([4], p. 57), the last inclusion 
means precisely that T is surjective. The proposition is proved. 

THEOREM I. Suppose X is a reflexive Banach space and B is a boundary. Then for any 
Banach space Y and any bounded linear operator T:Y + X such that T(Y)~B , one has T(Y) = X. 

Proof. By Proposition 1, it suffices to verify that every boundary in a reflexive Banach 
space has property (II). To do this one can proceed as in the proof of Theorem I from [3]. 
The theorem is proved. 

Remark. It is not known whether one can replace, in Theorem 1, B by the set of exposed 
points expU(X). 

The proof of the next result is straightforward. 

f Proposition 2. Let {xi, i}i be a biorthogonal system in the Banach space X. Set 

L ---- {z = ~ alz i, alz i converges in norm 
1 

and introduce a new norm on the linear manifold L by 

n 

n 1 

Then (L, [[['[H) is a complete linear normed space with basis {xi}, and 

l l x ~ < l l l ~ [ ] l ,  x ~  L. (I) 

THEOREM 2. Suppose X is a reflexive Banach space, B is an arbitrary boundary, and the 
minimal system {x i} has the property that every element of B can be expanded into a norm-con- 
vergent series with respect to {xi}. Then {x i} is a basis of the whole X. 

Proof. Define the linear manifold L and the norm I[]-[[[ as in Proposition 2. Let Y = 
(L, I]]-[]]) and let T be the natural embedding Y + X. By (I), T is a bounded linear operator. 
Furthermore, T(Y) ~ B , by the assumptions of our theorem. From Theorem I it now follows 
that T(Y) = X, i.e., {x i} is a basis of X, as claimed. The theorem is proved. 

Remark. Let B be an arbitrary boundary in the reflexive Banach space X. It can be 
shown that there is no minimal system in X with respect to which every element of B can be 
expanded into an absolutely convergent series. 
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