Remark. According to 1), we obtain a Lagrangian family $\left\{g g^{-1}\right\}$ on the orbit $\hat{\beta}$ which enables us to apply the scheme of Sec. 2 to $M=\Omega$ and $X=G / P$.

In contrast to the case of ordinary polarizations, the following theorem holds:
THEOREM 4. Given any $f \in g^{*}$, one can find a subalgebra p, such that (f, p) is a polarizing pair.

Now suppose that g is semisimple, $\mathfrak{b}=\boldsymbol{G}+\pi$ is a Borel subalgebra, $n \in \mathbb{g}$ is a nilpotent element, and $\mu: T^{*}(G / B) \rightarrow \$$. From Theorem 3 we derive:

THEOREM 5. a) $G \cdot n \cap \eta$ is a Lagrangian manifold and the dimension of the components of the fiber $\mu^{-1}(n)$ is $\operatorname{dim} n-1 / 2 \cdot \operatorname{dim} G \cdot n$ (see [4]).
b) Every component of $\mu^{-1}(G \cdot n \cap \pi)$ is the closure of the conormal bundle of some Schubert cell.

LITERATURE CITED

1. V. Guillemin and S. Sternberg, Am. J. Math., 101, No. 4, 915-955 (1979).
2. V. Guillemin and S. Sterbnerg, Invent. Mat., $\overline{67}$, No. 3, 515-538 (1982).
3. V. Ginzburg, "Symplectic geometry and representations," Preprint, Moscow State Univ. (1981).
4. N. Spaltenstein, Topology, 16, No. 2, 203-204 (1977).

TWO THEOREMS ON THE MASSIVENESS OF BOUNDARIES IN REFLEXIVE BANACH SPACES
M. I. Kadets and V. P. Fonf

UDC 517.98

Let X be a reflexive Banach space. We shall say that a subset B of the unit sphere $S(X)$ of X is a boundary (for the dual space X^{*}) whenever

$$
\forall f \in X^{*} 3 x \in B: f(x)=\|f\|
$$

Obviously, one of the boundaries is the set ext $U(X)$ of extremal points of the unit ball $U(X)$ of X. Generally speaking, however, a boundary does not necessarily contain all the extremal points [although it contains all the exposed points, exp $U(X)$]. The theorem of Lindenstrauss and Phelps [1] asserting that the set of extremal points of the unit ball in a reflexive Banach space is not countable has stimulated a series of papers devoted to the investigation of the massiveness (in some sense or another) of this set ([2, 3]). One can show that a boundary also enjoys the same massiveness properties.

The goal of this note is to discuss two new natural massiveness properties and prove that they are enjoyed by any boundary in a reflexive Banach space.

Proposition 1. Let X be a Banach space and $B \subset S(X)$. Then the following are equivalent statements:
(I) For any Banach space Y and any bounded linear operator $T: Y \rightarrow X$ such that $T(Y) \supset B$, one has $T(Y)=X$.
(II) For every representation of B as the union of an increasing series of sets, $B=$ $\bigcup_{1}^{\infty} B_{i},\left(B_{i} \uparrow\right)$, there is an index j such that

$$
\inf _{f \in S\left(X^{*}\right)} \sup _{x \in B_{j}}|f(x)|>0,
$$

(i.e., B_{j} is a norming set for X^{*}).

Proof. (I) (II). We proceed by reductio ad absurdum. Suppose that there is a representation $B=\bigcup B_{i}, B_{i} \uparrow$, such that none of the B_{i} is norming. Set $A_{1}=B_{1}, A_{i}=B_{i} \backslash B_{i-1}$

[^0](i $=2,3, \ldots$), $V=$ ol conv $\left\{l^{-1} A_{i}\right\}_{m=1}^{\infty}$, Let L be the linear manifold spanned by V, i.e., $L=\bigcup_{n=1}^{\infty} n \cdot V$. Let us show that $L \neq X$. Since V is absolutely convex and closed, it suffices to verify that V contains no ball centered at zero. Let $\varepsilon>0$ and take j such that $j^{-1}<\varepsilon$. Since B_{j} is not a norming set, there exists a functional $f \in S\left(X^{*}\right)$ such that $\sup _{x=B_{j}}|f(x)|<8$. Using the definition of V, we get $\sup _{x=1}|f(x)|<e$, which implies that V does not contain the ball $\varepsilon \cdot U(X)$.

Let Y denote the linear space L with unit ball V. From the fact that V is closed it follows that Y is a Banach space. Let T denote the natural embedding of Y (i.e., L) into X. It is readily seen that T is a bounded linear injection $Y \rightarrow X$ such that $T(Y) \supset B$, but $T(Y)=$ $\mathrm{L} \neq \mathrm{X}$. This contradicts (I) and proves the implication (I) \Rightarrow (II).
(II) \Rightarrow (I). Let T be a bounded linear operator from the Banach space Y into X, such that \quad. Set $B_{i}=T(i \cdot U(Y)) \cap B, i=1,2, \ldots$ Obviously, $\left\{B_{i}\right\}$ is an increasing sequence with $B=\cup B_{i}$. But then there is j such that

$$
\inf _{t=S\left(X^{*}\right)} \sup _{x=B_{j}}|f(x)|=\delta>0,
$$

which implies immediately that cl $T(U(Y)) \supset \delta / j U(X)$. By Lemma 2 ([4], p. 57), the last inclusion means precisely that T is surjective. The proposition is proved.

THEOREM 1. Suppose X is a reflexive Banach space and B is a boundary. Then for any Banach space Y and any bounded linear operator $T: Y \rightarrow X$ such that $T(Y) \supset B$, one has $T(Y)=X$.

Proof. By Proposition 1, it suffices to verify that every boundary in a reflexive Banach space has property (II). To do this one can proceed as in the proof of Theorem 1 from [3]. The theorem is proved.

Remark. It is not known whether one can replace, in Theorem 1, B by the set of exposed points $\exp U(X)$.

The proof of the next result is straightforward.
Proposition 2. Let $\left\{\mathrm{x}_{1}, \mathrm{f}_{\mathrm{i}}\right\}_{1}^{\infty}$ be a biorthogonal system in the Banach space X . Set

$$
L=\left\{x=\sum_{i}^{\infty} a_{i} x_{i}: \sum_{1}^{\infty} a_{i} x_{i} \text { converges in norm }\right\}
$$

and introduce a new norm on the linear manifold L by

$$
\|x\|=\sup _{n}\left\|\sum_{i}^{n} a_{i} x_{i}\right\|, \quad x=\sum a_{i} x_{i} \in L
$$

Then $(L,\|\mid \cdot\| \|)$ is a complete linear normed space with basis $\left\{x_{i}\right\}$, and

$$
\begin{equation*}
\|x\| \leqslant\|x\|, x \in L . \tag{1}
\end{equation*}
$$

THEOREM 2. Suppose X is a reflexive Banach space, B is an arbitrary boundary, and the minimal system $\left\{x_{i}\right\}$ has the property that every element of B can be expanded into a norm-convergent series with respect to $\left\{x_{i}\right\}$. Then $\left\{x_{i}\right\}$ is a basis of the whole X.

Proof. Define the linear manifold L and the norm $\|\|\cdot\| I$ as in Proposition 2. Let $Y=$ ($\mathrm{L},\| \| \cdot \| I$) and let T be the natural embedding $\mathrm{Y} \rightarrow \mathrm{X}$. By (1), T is a bounded linear operator. Furthermore, $\boldsymbol{T}(Y) \supset B$, by the assumptions of our theorem. From Theorem 1 it now follows that $T(Y)=X$, i.e., $\left\{x_{i}\right\}$ is a basis of X, as claimed. The theorem is proved.

Remark. Let B be an arbitrary boundary in the reflexive Banach space X. It can be shown that there is no minimal system in X with respect to which every element of B can be expanded into an absolutely convergent series.

LITERATURE CITED

1. J. Lindenstraus and R. Phelps, Isr. J. Math., 6, 39-48 (1968).
2. M. I. Kadets and V. P. Fonf, Mat. Zametki, 20, No. 3, 315-319 (1976).
3. V. P. Fonf, Ukr. Mat. Zh., 30, No. 5, 692-695 (1978).
4. N. Bourbaki, Topological Vector Spaces, Addison-Wesley.

[^0]: Kharkov Communal-Construction Engineering Institute. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 17, No. 3, pp. 77-78, July-September, 1983. Original article submitted June 18, 1982.

