Remark. According to 1), we obtain a Lagrangian family {gFg'} on the orbit § which en-
ables us to apply the scheme of Sec. 2 to M = 2 and X = G/P.

In contrast to the case of ordinary polarizations, the fdllowing theorem holds:

THEOREM 4. Given any feg* , one can find a subalgebra p, such that (/,p) is a polar-
izing pair.

Now suppose that g is semisimple, b=PF-+n is a Borel subalgebra, neg is a nil-
potent element, and u: 7* (G/B)-¢ . From Theorem 3 we derive:

THEOREM 5. a) Gn[in 1is a Lagrangian manifold and the dimension of the components of
s, . s
the fiber p~'{(n) is dimn—Y,-dimG-n (see [4]).

b) Every component of p-1{(G-n{1® is the closure of the conormal bundle of some Schubert
cell.
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TWO THEOREMS ON THE MASSIVENESS OF BOUNDARIES IN REFLEXIVE BANACH SPACES

M. I. Kadets and V. P. Fonf UpC 517.98

Let X be a reflexive Banach space. We shall say that a subset B of the unit sphere S(X)
of X is a boundary (for the dual space X*) whenever

Vie X*3ze= B: () =|fl

Obviously, one of the boundaries is the set ext U(X) of extremal points of the unit ball U(X)
of X. Generally speaking, however, a boundary does not necessarily contain all the extremal
points [although it contains all the exposed points, exp U(X)]. The theorem of Lindenstrauss
and Phelps [1] asserting that the set of extremal points of the unit ball in a reflexive
Banach space is not countable has stimulated a series of papers devoted to the investigation
of the massiveness (in some sense or another) of this set ([2, 3]). One can show that a
boundary also enjoys the same massiveness properties.

The goal of this note is to discuss two new natural massiveness properties and prove
that they are enjoyed by any boundary in a reflexive Banach space.

Proposition 1. Let X be a Banach space and B S(X). Then the following are equivalent
statements:

(I) For any Banach space Y and any bounded linear operator T:Y - X such that 7(¥) OB,
one has T(Y) = X.

(I1) For every representation of B as the union of an increasing series of sets, B =

G.BP(Bﬂ), there is an index j such that
1

inf su z 0,
- feS(X*)xegj U( ) l>

(i.e., Bi is a norming set for X*).
3 g

Proof. (1) (I1). We proceed by reductio ad absurdum. Suppose that there is a
representation B =J&;,B;1 , such that none of the Bj is norming. Set A1 = Bi, Aj = Bj \Bj_1
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(1 =2, 3,...), V= cloonv{i-4),+ Let L be the linear manifold spanned by V, i.e., Lﬁﬂ\jln-‘r’.

Let us show that L # X, Since V is absolutely convex and closed, it suffices to verify that
V contains no ball centered at zero. Let € > 0 and take j such that i~ < e, Since Bj is
not a norming set, there exists a functional fe §(X*) such that aupBIJ‘(z)'l<e. Using the defi-
xeE
J

nition of V, we get sue_]f(z)|<e y which ipplies that V does not contain the ball e-U(X).
B

Let Y denote the linear space L with unit ball V. From the fact that V is closed it
follows that Y is a Banach space. Let T denote the natural embedding of Y (i.e., L) into X.
It is readily seen that T is a bounded linear injection Y - X such that T(¥)D> B, but T(Y) =
L # X. This contradicts (I) and proves the implication (I) = (II).

(I1) = (I). Let T be a bounded linear operator from the Banach space Y into X, such
that . Set By=T(@-U(¥YNB, 1=1, 2,.... Obviously, {Bi} is an increasing se-
quence with B= UB;. But then there is j such that

inf sup |f(z)|=0>0,
1=8(X*) x;—:'Bj

which implies immediately that d T(U(¥)D8iU(X). By Lemma 2 ([4], p. 57), the last inclusion
means precisely that T is surjective. The proposition is proved.

THEOREM 1. Suppose X is a reflexive Banach space and B is a boundary. 'Then for any
Banach space Y and any bounded linear operator T:Y - X such that T(¥Y)D B, one has T(Y) = X.

Proof. By Proposition 1, it suffices to verify that every boundary in a reflexive Banach
space has property (II). To do this one can proceed as in the proof of Theorem 1 from [3].
The theorem is proved.

Remark. It is not known whether one can replace, in Theorem 1, B by the set of exposed
points exp U(X).

The proof of the next result is straightforward.

Proposition 2. Let {xi, fi}T be a biorthogonal system in the Banach space X. Set

L={z=ez,: i“i"’i converges in norm }
1

and introduce a new norm on the linear manifold L by
n '
Izl = sup |Daz] s=Daz L.
1

Then (L, {i*l}) is a complete linear normed space with basis {xi}, and
f=zl<llzlll, ze L. &)

THEOREM 2. Suppose X is a reflexive Banach épace, B is an arbitrary boundary, and the
minimal system {xi} has the property that every element of B can be expanded into a norm-con-
vergent series with respect to {xj}. Then {xij} is a basis of the whole X.

Proof. Define the linear manifold L and the norm !ll-lll as in Proposition 2. Let Y =
(L, IIl«1ll) and let T be the natural embedding Y > X. By (1), T is a bounded linear operator.
Furthermore, T(¥Y)DB , by the assumptions of our theorem. From Theorem 1 it mow follows
that T(Y) = X, i.e., {x;} is a basis of X, as claimed. The theorem is proved.

Remark. Let B be an arbitrary boundary in the reflexive Banach space X. It can be
shown that there is no minimal system in X with respect to which every element of B can be
expanded into an absolutely convergent series.
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