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ON ABSOLUTE, PERFECT, AND UNCONDITIONAL 
CONVERGENCES OF DOUBLE SERIES IN BANACH SPACES 

M. I. Kadets UDC 513.88 

We prove that, in the case of double series, perfect and unconditional convergences coincide, while ab- 
solute and perfect convergences do not coincide even for numerical series. 

The aim of  the present paper is to extend some concepts and, where possible, results concerning rearrangements 
of (ordinary) series in Banach spaces to the case of  double series. For definiteness, we consider real spaces. 

Recall that a series y~ x n in a Banach space is called absolutely convergent if the numerical series ~ II xnll 
converges. A series is called perfectly convergent if, for any collection of  coefficients t~ n = + 1 (which is denoted 

as c~ a D), the series ~ O~nX n converges. A series is called unconditionally convergent if, for any rearrangement 

of the natural series x : l~I ~ 1~, the rearranged series y ,  Xz(n) converges perfectly. The converse statement is 

true if and only if the space is finite-dimensional. For a detailed presentation of  the theory of  rearrangements of  
series in Banach spaces, see [1]. 

Let us pass to the investigation of  double series. First of  all, we give the following definition of  the conver- 
gence of  double series, which somewhat strengthens the conventional Pringsheim definition of convergence: 

Definition 1. A double series y~ Xij in a Banach space X converges to a sum S if 

(a) the sequence of "'rectangular" partial sums converges: 

S =  lim ~ ~ x i j ;  
r n ' n - " ~ ~  i = l  j = l  

(1) 

(b) every "row series" X j  Xij converges; 

(c) every "column series" E .  Xij converges. 
I 

We can now introduce the notions of  absolute, perfect, and unconditional convergences consistent with the 
structure of double series as follows: 

Definition 2. A series ~ xi) is called absolutely convergentif the numerical series ~ Ilxij[I con- 

verges. 

Definition 3. A series is called perfectly convergent if  for any collection of coefficients tx, [~ ~ D, the 

series ~ cti~jxij converges. 

Definition 4. A series is called unconditionally convergent i f  for any rearrangement of the natural series x 

and cy, theseries ~ x~(i~o(j) converges. 
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Let us show that, in the case of perfect convergence, conditions (b) and (c) in Definition 1 follow from condi- 
tion (a). 

Proposit ion 1. Let a double series ~ x ij be such that, for any set of coefficients o~, ~ ~ D, the sequence 

of rectangular partial sums is convergent: 

S ( a , ~ )  = l imSm, , (~ ,~)  = lim ~ ~xq. 
m'n"~** i = l  j = l  

Then every column series and every row series converge perfectly. 

(la) 

Thus, in the investigation of perfect convergence, we can restrict ourselves to the Pringsheim convergence. As 
shown below, Definition 1 turns out to be more natural for unconditionally convergent series. 

Let us formulate the principal results of the present paper. 

Theorem 1. For a double series Z Xij in a Banach space X, the following statements are equivalent: 

(B)  

A e) = ~j = {xij}7= 1' j ~ I~I, 

where ( ej ) is a canonical basis of the space c o. 

Theorem 2. Every absolutely convergent double series converges perfectly. 

true even for numerical series: There exists a perfectly convergent numerical double series 

absolutely convergent. 

Theorem 3. A double series converges unconditionally if and only if it converges perfectly. 

Let us introduce certain notions and consider some auxiliary statements. 

For ordinary perfectly convergent series, the following theorem is true: 

Gel'fand Theorem [1, p. 9]. l f  a series ~ x n converges perfectly, then the series 

uniformly on D, i.e., 

(A) the series converges perfectly; 

the vector-valued matrix A = ( xi) ) generates a linear compact operator A that maps the Banach 

space c o into the Banach space Perf(X) of all perfectly convergent ordinary series and acts in the 

following way: 

The converse statement is not 

Z a ij that is not 

Z OLnX n converges 

Proof. Let c~ and I] be arbitrary collections of coefficients. We f o r m a n e w  collection c~'= {c~l,-c~2, 

�9 x U [~j. -c t  3 . . . .  }. Then the half sum of the series ~" c~i~jxij and Z %~jx i j  is a convergent ordinary series • j  

Since 13 ~ D is arbitrary, the row series ~] j  x U 13j converges perfectly. The perfect convergence of the other row 

series and all column series is proved similarly. 
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V ~ > 0  3n e ~ I  V m > n ,  V c t ~  D EO~iXi < ~. 
I71 

In this case, the set of  sums S ( c~ ) = E ~ is a compact set in X. The converse statement is also true. 

Space Perf(X). The Banach space Perf(X) of all perfectly convergent series in X is defined as a linear 

space of all sequences .~ = {x n }~* C X that generate perfectly convergent series with coordinatewise summation 

and multiplication by scalars. This linear space is equipped with the norm 

~o 
II ~ II = II (xn)~ 11 = s u p ( l l s ( ~ ) f l :  ~ O) .  

The Gel'fand theorem can be given in the following equivalent form: 

Proposi t ion 2. A series E xn converges perfectly if and only if a linear operator A : c o --4 X defined by 

the equality A e j  = x j ,  j ~I~I, is compact. In other words, for any Banach space X, Perf(X) = K(co, X) ,  

where K(co, X) is the Banach space of all compact operators. 

Note that the space Perf(X) can also be represented as the following tensor product [2, p. 148]: 

Perf(X) = K(co, X ) = l I | 

We also give two auxiliary statements. 

L e m m a  1. (Kalton [3]) The space Perf(X) contains a subspace isomorphic to c o i f  and only if  X con- 

tains such a subspace. 

L e m m a  2. [f a Banach space Y contains no subspaces isomorphic to Co, then every bounded linear oper- 

ator A:  Co--~ Y is compact. 

Proof. Since c 0 is isomorphic to the space of all continuous functions on a one-point compactification of a 

natural series and Y does not contain c 0, by the Pelczynski theorem [4], the operator A is weakly compact. Since 

the space c o does not contain subspaces isomorphic to l 1, by the Rosenthal theorem [5], every bounded sequence 
in it contains a weakly fundamental subsequence. According to Theorem 4 in [6, p. 532], every weakly compact op- 

erator that acts from c o into any Banach space maps weakly fundamental sequences into strongly convergent ones. 

The argument presented above implies that the operator A maps a unit sphere c o into a strongly compact subset of 

the space Y. Lemma 1 is proved. 

Compact set D 2. The set of all pairs of sequences of "signs" ct = (~xi) appearing in the definition of perfect 

convergence turns out to be a metrizable compact set if we define a fundamental system of neighborhoods of every 
point as follows: 

Omn(O~O,~O ) ---- ~ ( 0 ~ , [ ~ ) E  D2: O~i= 0~ 0, ~ j = ~ 0  for 1 S i < m ,  l < j < n } .  

Every perfectly convergent series ~ xij  can now be associated with the function S (a ,  13) = ~?. c~i[~]xi] on the 

compact set D 2 with values in X. In this case, every partial sum S,nn(~, ~) in (la) is a continuous function. The 

functions introduced above will be used in the proof of Proposition 3. 
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Functional M(A).  For an m xn  matrix Am~= (xij) formed of elements o f a  Banach space X, we define the 

functional 

M(Amn) = sup{UZ , jxiill: : --+1}. 

For an infinite matrix Amn = (Xij) formed of terms of a perfectly convergent series ~ Xij ,  the value of the func- 

tional M(A)  can be determined by passing to the limit 

M(A)  = lim M(Amn)= sup{[lZ ; jx0ll: 
m , n  ---) oo 

Below (in the proof of Proposition 3), we show that M(A)< oo for any matrix A generated by a perfectly conver- 
gent series. 

Lemma 3. The functional M(A ) is the norm on the space of all perfectly convergent double series. I f  a row 
or a column is removed from the matrix A (Le., the corresponding elements of the matrix are assumed to be equal 
to zero), the value of  the functional does not increase. I f  we select a submatrix B of the matrix A, then 
M ( A - B )  < 2M(A). 

Proof. The fact that M(A)  is a norm can be verified directly. Below (in the proof of Theorem 1), we estab- 

lish that the space of all perfectly convergent series is complete in the norm M(A). We can remove a column (or a 

row) from the matrix A by calculating the half sum of the matrix A and the matrix A" derived from A by the 

multiplication of the elements of this row or column by - 1. Since M(A) = M(A') ,  we have M((A + A ' ) / 2 )  < 

M(A).  Every submatrix B can be obtained from the matrix A by omitting the rows and columns that do not 
compose the matrix B. Therefore, M ( B ) < M ( A ) and, hence, M ( A - B) < M ( A ) + M ( B ) < 2M(A).  

Let us prove a statement that generalizes the Gel'fand theorem to the case of double series. 

Proposition 3. I f  a series ~ xi) converges perfectly, then the set of sums of the series ~ c~i~ j x i j ,  (~x, [J ) 

D 2, isacompactset in  X. 

Proof. It follows from Definition 3 that a sequence of continuous functions (partial sums) S m n(ct, [~ ) con- 

verges pointwise on the compact set D 2 to a function S(cr [3). This means that S(cr 13) is the Baire function of 

the first class and, consequently, it possesses a point of continuity (c~ 0, 130) e D 2. Given e > 0, we determine in- 

dices m and n so that the function S(cr 13) varies weakly in the neighborhood Ornn(~x ~ 1~0), namely, 

IIs(cx, fl)-s(~0,13~ < ~/8 v (~ , [3 )~  Om,(=0,130), (2) 

and is fairly well approximated by the corresponding partial sum at the point (cr ~ ~ 0), namely, 

Ils(czo, f~~176 B~ < E/8. (3) 

Let us fix a point (c~, [3) ~ Omn(~ ~ [30) and form another point (N, 3)  by changing the signs of the coordinates 

~i  for i > m and [3i for j > n, whereas the other signs remain unchanged. It is clear that (N, ~)  ~ O,n n(C~ o, 

~0).  Consider the element x defined by the equality 
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which is equivalent to 

x = s(oto, ~ o ) _  Is (a ,  13)+s(~,  ~ ) ] /2 ,  

x = [s(c~o, pO)_s,,,.(o~o, po)] + 
c o  

i = m+l j = n+l 

o r  

supllS(c~, ~ ) -  Spq(~, [3)ll <- e. (7) 

Thus, we establish that the sequence of continuous functions Sp q((Y., ~ ) converges uniformly to S (or, [3 ) on D 2. 

This means that the function Seq(cx, [5) is continuous on the compact  set D 2 and, hence, the set of  its values i_s a 

compact  set in X. 
Let  us prove the principal results of  the present paper. 

Proof of Theorem I. Let  us prove the implication ( A )  ~ (/3). The norm of an arbitrary linear operator  

A" c 0--~ Y can be calculated according to the formula 

IIAII : supl[ZISjAejll, 

where the upper bound is taken over  all possible collections of  the coefficients [Sj = + I. Let us extend our operator 

It follows from inequalities (2) and (3) that [1 x 11 < e /8  and 

~_~ oti[3jxij < ~/4, (4) 
i = 1 j = n+l 

where, according to the definition of  the neighborhood Omn, the coefficients ct i and [Sj. are arbitrary, (or, I] ) 

D 2. By virtue of  conditions (b) and (c) of  Definition l, every row series and column series converge perfectly. 
Therefore, by virtue of  the Ge l ' f and  theorem, we get 

' v ' e > 0 ,  V m ~  N 3 q e  N V ( a , [ 3 ) ~  D 2" ~ ~i~jXij < E/8, (5) 
i=1 j = q + l  

(6) 
[ = p +  I i 1 / = 1  

Without loss of  generality, we can assume that p > m and q > n. By adding inequalities (4), (5), and (6) together, 

we obtain 

s u p  + + ol, i~jxij <- E 
ct,[$ k . i = l  j =  1 i=p+lj=l i=p+lj=q+l 
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A, which was defined only on the unit vectors e j ,  to linear combinations of the unit vectors and calculate its norm. 
We have 

11 A I1 = supll~.fljAe:ll = sup {112 ~if~ixoll: ~ ~ D, f~i = +.1 }. 

By extending the upper bound to all [3 ~ D, we obtain the estimate 11A [I -< M(A) [below, we establish that II A II = 

M(A)]. Let us now prove the compactness  of  the operator A. Consider the finite-dimensional operators  A,,,,,: 

c o --~ Perf  (X) defined by the equalities 

{ }m for l < j < n ,  Amnej = xij i=1 

Atone j = 0 for j>n .  

Let us show that these operators approximate the operator A with any degree of accuracy, which implies its com- 
pactness. W e  have 

IIA-A,JI - M(A -Amn ) = suplls(a, f3)--Smn(a, [3)11. 
c~,13 

By virtue of  inequality (7), the last expression tends to zero as m, n --~ oo. By virtue of the compactness of  the oper- 

ator A proved above, we can extend its definition to the space l.. = (c0)**, preserving the range of its values, i.e., 

A**: l~  ---~Perf(X). This implies that IIA I1-- M(A).  

Let us prove the implication (B) ~ (A). For any m c N,  we form a set C,, C c o by setting 

C m = { y = ( y i )  e Co: Y i = 0  for l < i < m ,  y i = + l  f o r m < i < m  I with arbitrary rn 1, Y i = 0  for i > m l } .  

It is clear that any sequence of "representatives" y(m) e C, n weakly converges to zero as m ~ ~,. Since the 

operator A is compact,  the sequence of  images AT(m) strongly converges to zero. This means that, for any e > 0, 

there exists m such that the set A C m (and all sets A C k for k > m) lies in the e /2-ne ighborhood of  zero in 

Perf (X). The same is also true for the weak closure C m of the set C m in l~,  i.e., 

sup {IIA~'II: ~/~ Cm} = supa,13 j=l~lJi=m+10tixij < e/2. 

This, in particular, means that if we remove all rows beginning with the number  i = m + 1 from the matrix A ,  we 
obtain the matrix 

A m = I x (  m)=xij  at l < j < m ,  x(ij r~)=O at i > m ; j ~  N } ,  

which slightly differs from the original matrix: [[ A - A , ~  1]< e/2.  By applying the Gel ' fand  theorem to finitely 

many nonzero row series and properly choosing n, we obtain the finite matrix 

Amn= {x(ijmn)=xij for l <_i<m, l <_j<_m, x(ijmn)=O, otherwise}, 
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which slightly differs from the matrix A: 

I IA-AmJl  < e/2. (8) 

In other words, the double series ~ e~i~3 j xij converge in acertain increasing sequence of rectangular partial sums 

uniformly with respect to (a ,  [3) ~ D 2. Finally, let us show that the series ~ xij converges perfectly. For given 

> 0, we take m and n such that inequality (8) is satisfied. Now let p > rn and q > n be arbitrary. The matrix 
A - Apq is obtained from the matrix A - A mn by removing the submatrix A pq - -  A m n According to Lemma 4, we 

have 

I lA-Apql l  < e 

for all p > m and q > n. By Proposition 1, the series ~ xij converges perfectly. The implication (B)  ~ (A) is 

proved. 

Corollary 1. I f  a Banach space X does not contain subspaces isomorphic to c o (in particular, if  X = 

JR), then a sufficient condition of the perfect convergence of the series Z X i j  in X is the boundedness of the 

operator A : c o -4 Perf (X) defined in the conditions of Theorem 1. 

Proof. By Lemma t, the space Perf(X) does not contain subspaces isomorphic to c 0. By Lemma 2, every 

bounded operator A : c0 -4  Peff(X) is compact. It remains to use the implication (B) ~ (A)  from Theorem 1. 

Proof of  Theorem 2. The first part of the theorem is obvious, namely, the absolute convergence of a series 

implies all other types of its convergence. To prove the second part of the theorem, we construct the corresponding 

example. Recall that an orthogonal matrix of order m = 2 n is called a Walsh matrix W n , n e l~I, if all elements of 

it are equal to +1. A sequence of Walsh matrices can be defined by induction as follows: 

W 1 = , w 2 =  , w 2 =  , . . . .  

-1 W 1 - W  1 W2 -W2 

The sum of the moduli of elements of the Walsh matrix is N ( W  n ) = m 2. Let us find the upper bound for the values 

of  the functional M ( W  n). We have 

M(Wn) = max { ~  cti~jwij: CX,[3~D} = max ~jwij . 
13 i = 1  

By applying the Cauchy inequality to the last expression, we get 

M(Wn) < rnaxqmm [3jwij = 4-mmmax| ~_~[3j[3kwijwik I . 
\ i , j , k  J 

In view of the fact that, by definition, any Walsh matrix is orthogonal, we obtain 
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M ( W . )  <- ~ ~jf~k wijw~k = ~ ~ w  = m 3~:. 
\ i,j j 

We now introduce the matrices An= 2 -2n W n. It is clear that 

N(An) = 1, M(An)  < 2 -n/z, n ~ l~I. 

Let us form an infinite matrix A = (ai j )  by inserting the matrices A n on its diagonal and setting the other elements 

to be zero. Since M ( A )  < ~ + 1, the double series ~ aij converges perfectly by Corollary 1. It is not ab- 

solutely convergent because N(A)= oo. 

Proof o f  Theorem 3. Let a series ~ xij converge perfectly. In addition to the compact operator A : c0---~ 

Perf (X) generated by the series ~ xij, for any rearrangement of the natural series r we introduce an operator S : 

c o -+ c o that rearranges unit vectors of the space Sej  =e~tj).  Furthermore, for some rearrangement ~, we intro- 

duce an operator P that rearranges the "coordinates" of any element .~ = {xi}l: P~" = {xr~(i)} ?. It is clear that S 

and P are surjective isometrics of the corresponding spaces. Then the operator PAS : c o ~ Perf(X) is also com- 

pact and, hence, the rearranged series ~ Xn(i),~(j ) (perfectly) converges. Since the rearrangements ~ and ~ are 

arbitrary, the series ~ Xij converges unconditionally. Let us pass to the proof of the converse statement. Let the 

series ~ Xij be not perfectly convergent. In this case, if a certain column series or row series is not perfectly 

convergent, then, by virtue of the coincidence of perfect and unconditional convergences of ordinary series, the 

series ~ Xij iS also not unconditionally convergent. Now assume that the series is not perfectly convergent but 
each column series and row series of it converge perfectly. By virtue of this assumption, we can define the operator 

A at least on the linear span of unit vectors of the space c 0. Consider the series in Perf (X) formed of images of 

the unit vectors from Co: ~ Aej  = ~ .~j. Let this series be perfectly convergent. Then, by the Gel'fand theorem, 

the sums of the series ~ ~j~j, ~ ~ D, form a compact set. Since the image of a unit sphere in the space c o is a 

subset of a closed convex hull of the mentioned compact set, A is a compact operator and, hence, the series ~ Xij 

is perfectly convergent. Thus, we arrive at a contradiction. Therefore, the series ~ ~j is not perfectly convergent. 
This means that it is also not unconditionally convergent. Therefore, there exists its divergent rearrangement. We 

preserve the notation ~ ~j and ~ Xij for this rearrangement and for thecorresponding rearrangement of the 

double series. Since the series ~ ,  ~j diverges, there exists a sequence of its segments 

y~ = 
qk 
E X), 

J = Pk 
I < P l  < q l  < P E < q 2  < . . . .  

that is bounded in norm from below by a positive number a, namely, 

II Y~ 11 = sup ~jx o > a .  

ct,~ i=l j 
(9) 

Let us perform the following inductive process: 

Step 1. Taking into account that all column series converge perfectly, for the first pair of indices (p  l, q 1), we 

find ml such that 
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sup ~ ql (Zi~jXij E E <a/3. 
~,~ i=ml+l j=pl 

By comparing this inequality with inequality (9), we get 

[ms ql [ 
sup ~ o~i[3jxij > 2a/3 > a/3. (101) 
t~,~ i=1 J=Pl 

Step 2. In the sequence of pairs of indices (p k, q k), we choose a pair [for simplicity, denote it by (p 2, q 2)] 

such that P2 > ql and 

]ms q2 
sup ~, txi~jxij < a/3. 
ct,{3 i=1 J=P2 

By using the fact that all row series converge perfectly, we define an index m 2 > m 1 so that 

q9 

sup ~.. E O~i~jXij < a/3. 
C~,~ i=m2+l j=P2 

By comparing the obtained inequalities with inequality (9), we get 

sup ~., ai~jxij > a/3. (102) 
0~,~ i=ml+l j=P2  

In the sequence of pairs of indices (p~ qk), we choose a pair [for simplicity, denote it by (P3, q3)] Step 3. 
such that P3 > q2 and 

We define an index m 3 > m 2 so that 

 o,xi l 

sup i q 3oi jx ll a,3 
t~,[~ i=m3+l j 

By comparing the obtained inequalities with inequality (9), we get 

sup E ~i~Jjxi.i > a/3. (103) 
o~,~ Ii=rn2+ 1 J=P3 

By infinitely continuing this process (using every time the perfect convergence of row series and column series), we 
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obtain the disjunctive sequence of matrices 

B k = {xij  for ink_ 1 < i < m k and pt<_j< qk; 0 for the other pairs of indices (i , j)} 

whose norms admit the uniform lower bound 

1167 

IIBkll > a / 3 .  

Now let us fix signs (ct 0, 130) �9 D 2 that realize the norms of the matrices B k, 

sup ~ qk tx~ 13ix v I l n k l l - -  9 0 . > a / 3 ,  
o~,~ i=mk_l+l j =  pk 

and pass to the construction of a divergent rearrangement of the series , ~  xij .  Every set 

H k = {rak_ l<i<rnk ,  p k < j < q k }  

of pairs of indices (i, j )  can be represented as the union of four subsets 

H k = H~c(+, +) I..J Hk(+,- )  U Hk(-,  +) U H k ( - , - )  

0 0 in accordance with the values of the coefficients s ~ and 15 ~ In this case, for (i , j)  �9 H k, the sum "~i,j txi ~3jxij 

can also be represented as a sum of four terms. In norm, one of these terms [ denote it by Hk(Yk, 5k) ] is at least a 

quarter of the norm of the total sum: 

{lli~,jcx~176 for ( i , j ) � 9  Sk)}  > a/12. 

Finally, let us find a divergent rearrangement of the series ~ xij .  For this purpose, we rearrange the indices i in 

each segment ink_ 1 < i <_ m k so that the indices from Hk(Tk, ~)k) ~ c u p y  the first place. We also perform a simi- 

lar procedure with the index j. Indices that do not belong to the sets H k remain at their places. We denote by ~x 

and c, respectively, the obtained "block" rearrangements of the natural series and, for simplicity, denote the rear- 

ranged series ~ x~(i~ c (j) by ~ x~j. This series now contains the sequence of rectangular sums 

S(k)= ~x~ j  for mk_l<i<-rk<_mk and pk<_j<_sk<qk, 

the norms of which, as indicated above, are estimated from below by the number a~ 12. Each sum S (k~ can be ex- 

pressed in terms of rectangular partial sums of the rearranged series as follows: 

[ S r , .  - 
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This means that one of  the differences of  partial sums is estimated from below by the number a/24  for all k 

N.  This implies that the rearranged series is divergent. Theorem 3 is proved. 
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