
To this end, we consider the symplectic group 

' I " 

(Here g' stands for the matrix transposed to g and I is the identity matrix.) The Weil representation 
T(g), g E G, acts on the space L2(R") by the relations [2, pp. 61-62] 

To=). (T(J) f ) (x)  = 

Conditions (3) are equivalent to the relations f2 = T(go)fl, T(J)f2 = AT(gb)T(J)fl. Hence, 
T(J-Xg-bJga)fl = .~lfl ,  where I ,1 = 1. We set ha,b = J-~g-bJg,~. Then we have 

(~  a ) T(h.,b)fl =Alf l .  ha,b = I + ba ' 

Thus, f l  is an eigenvector of T(h~,b). This is possible only if the matrix ha,b is conjugate (in the 
group G) to an orthogonal matrix of the form 

- d  ' c, d E Mat,,(R), c + id E U(n). 

The complete characterization of the pairs of symmetric matrices a, b for which these properties are 
satisfied is unknown to the author. We can readily show that this condition holds for a > 0 and - 4 a  -1 < 
b < 0 (the matrix inequalities are defined by means of quadratic forms). In this sufficient condition we can 
interchange the matrices a and b as well. Under these conditions, there exists a pair f l ,  f2 satisfying (3). 
For n = 1, this pair can be written in the form (2). We omit the explicit formulas for functions f l ,  f2 
from (3). We only note that these formulas involve Hermite's polynomials and exponential functions. 
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A series E x,, in a Banach space X is said to be absolutely convergent if the number series • IIx=ll 
converges, perfectly convergent if the series ~ a=x,, .converges for any coefficients a,, = -t-1 (in this case 
we write a E D), and unconditionally convergent if the series ~ x,r(,) is convergent for any permutation 
7r: N ~ N of positive integers. The notions of perfect and unconditional convergence are equivalent. Each 
absolutely convergent series converges perfectly; the converse is true if and only if X is finite-dimensional. 
In the following, we use the Banach space Perf(X) of perfectly convergent series in X equipped with the 
norm sup{[I )-~ a,,x,,ll : a E D}. For these notions and facts, see [1]. 
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Let us consider double series. First, we give a definition of convergence for a double series; this definition 
is somewhat stronger than the Pringsheim convergence. 

Def in i t ion  1. A series ~ xij in a Banach space X converges to s E X if(a)  each column series )-':-i x~j, 
j E N, converges, (b) each row series )-~j z i j ,  i E N, converges, and (c) the sequence of "rectangular" 
partial sums converges to s: 

s = lim S,nn = lim 
{'° } 

~--~xij: ra in(m,  n)---, ~ . 
i = l  j = l  

The notions of absolute, perfect, and unconditional convergence for double series, which are well-adapted 
to the structure of these series, can be introduced as follows. 

Def in i t i on  2. A series ~ xij is said to be absolutely convergent if the number series ~ [[xij[[ converges. 

De f in i t i on  3. A series ~ xij is said to be perfectly convergent if for any a , /3  E D the series ~ T, ijOtifl j 
converges. 

De f in i t i on  4. The series ~ xij is said to be unconditionally convergent if for any permutat ions lr and 
a of positive integers the series ~ x,~(i),~(j) converges. 

The following statement  characterizes perfect convergence in terms of linear operators. 

T h e o r e m  1. Consider a double series ~ xij in a Banach space X .  The following conditions are 
equivalent: (A) the series is perfectly convergent; (B) the vector-valued matrix A = (zij) generates a 
compact linear operator A: co ---* Per f (X)  by the formula Aej = {x,,}i=l,  j E N, where (ej) is the 
canonical basis of the space co. The norm of this operator is given by 

M ( A ) = s u p {  l ~ x i j a i [ 3 j l [ : a , [ 3 e  D }. (1) 

The following two theorems describe the relationship between perfect, absolute, and unconditional 
convergence for double series. 

T h e o r e m  2. A double series is perfectly convergent if and only if it is unconditionally convergent. 

T h e o r e m  3. There exist double number series that converge perfectly but not absolutely. 

S k e t c h  o f  p r o o f .  We construct the desired counterexample using ~blocks" obtained by normalizing 
Waish matrices appropriately. RecaU that  the Walsh matr ix  Wn, n E N, is an orthogonal m x m matrix, 
m = 2 n , all of whose entries are equal to :kl .  The sequence of Walsh matrices can be defined inductively 
as follows: 

W I =  ( 1  1 ) ~V2= (W1 W1 ) etc. 
1 - 1  ' w 1  - w 1  ' 

The sum of absolute values of the entries of Bin is N(Wn) = m 2 • The functional (1) satisfies the 
inequality M(Wn) < m 3/2. Let us introduce the matrices A ,  = m-2Wn.  Clearly, N ( A , )  = 1 and 
M ( A , )  < 1/v/-~. Consider the infinite block diagonal matrix A = (aij) with diagonal blocks A,,. The 
double series correspor.ding to this matr ix converges perfectly (M(A) < v/2 + 1), but  not absolutely 
(N(A) = oo). 

R e m a r k  1. Theorems 1 and 3 remain valid if we reject conditions (a) and (b) in Definition 1. However, 
Theorem 2 fails in this case. A counterexaznple is given by the double series ~ aij, where 

alj = ( - 1 )  j ,  a2j = - a l j ,  aij = 0 for i > 2, j E N. 

141 



R e m a r k  2. Although the notions of unconditional and absolute convergence of double series are dif- 
ferent, the following statement  is valid: if a series ~ aq  is unconditionally convergent, then the series 
~ ai~ converges. 
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In recent years, a series of papers [1-4] appeared in which the deformation quantization, on certain 
classes of K/iahler manifolds, arising from a Berezin quantization [5] was studied. On an arbi t rary symplectic 
manifold, the deformation quantization introduced in [6] can be constructed in many  different ways [7-9]. 
In the present note, we give the construction of a deformation quantization on an arbi t rary KKhler manifold 
by using Fedosov's approach [9] and indicate the relationship between this quantization and a Berezin one. 
For all cases considered in [1-4], the deformation quantization coincides with that  constructed in the 
present paper. 

1. Let us give the necessary definitions. A deformation quantization on a symplectic manifold M is 
the s tructure of an associative algebra in the space of formal power series 3" = Coo(M)[[v]] in which the 
mu l t i p l i c a t i on ,  is given by a sequence of bidifferential operators {Cr(. ," )}, r = 0, 1 , . . .  ; namely, for 
f ,  g E 3" we set f * 9 = ~-~-0 VrCr(f ,  9) ,  where 

C o ( f , g ) =  f y ,  C l ( f , y ) - C l ( g , f ) = i { f , g } ,  (1) 

and { - , -  } is the Poisson bracket on M which is natural ly extended to 3". 
A (special) Berezin quantization on M is given by a family of associative algebras AA C Coo(M), 

where the parameter  h ranges over a set E of positive reals with limit point 0. Then  in the product 
I-Ibis A~,  with component-wise p r o d u c t . ,  one chooses a subalgebra ~ such that  for an arbi t rary element 
f = f (h )  E ~[, where f (h)  E Ah,  there exists a limit limb-.0 f(li) = ~ ( f )  E Coo(M).  The following 
correspondence principle must hold: for f ,  9 E 

~(f * 9) ---- ~(f)~P(9), ~(h-' (f * .q -- g * f)) ---- i {~(f), ~(9)}. (2) 

We can readily extend the Berezin definition of quantization to associate with it a deformation quanti- 
zation. Assume that  the algebra 1~ is chosen in such a way that  its elements f = f (h )  can be expanded in 
asymptotic series with respect to h ~ 0, with coefficients from C°°(M) ,  f ,,, ~_~r~--o t~ fr  • Define a map- 
ping ~b: ~ / ~  3" by setting ~b(f) = Y~roo=0 v~fr • We say that  the Berezin quantization is associated with a 
deformation quantization (i.e., with the structure of an algebra) on 3" if ~b is an algebra homomorphism. 
In this case, the correspondence principle (2) follows from (1). 

2. Let us now define a deformation quantization on an arbitrary K/ihler manifold. Let M be a K~ahler 
manifold, let d imn M = 2m,  and let to be a K~ikder form on M.  For any open subset U C M we write 
3"(U) = Coo(U)[[v]]. On 3"(U), there is an action of the formal series of differential operators. Let U be a 
coordinate chart  with coordinates z = ( z l , . . . ,  Z,n) on which a potential <b = ~(z ,  ~) of the K£hler form 
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