To this end, we consider the symplectic group

G:Sp(zn)z{gz(z ‘I;), a,b,C,dEMatn(R),g’Jg=J}, J:(? —OI>

(Here ¢’ stands for the matrix transposed to g and I is the identity matrix.) The Weil representation
T(g), g € G, acts on the space L;(R™) by the relations {2, pp. 61-62]

~

T NE) = exp(mite,z), av= (g §).8=¥,  TDNE=Ta).

Conditions (3) are equivalent to the relations fo = T(ga)fi, T(J)f2 = AT(gs)T(J)f1. Hence,
T(J'g-sJga) fi = A1fi, where |A\|=1. We set hy s = J 1g_3Jga. Then we have

I
ha,bz (b I_:ba)y T(ha,b)fl =’\1fl-

Thus, f; is an eigenvector of T(hs ). This is possible only if the matrix h, is conjugate (in the
group G) to an orthogonal matrix of the form

(_cd ‘c’) ¢,d € Mat(R), c+id € U(n).

The complete characterization of the pairs of symmetric matrices a, b for which these properties are
satisfied is unknown to the author. We can readily show that this condition holds for @ > 0 and —4a~! <
b < 0 (the matrix inequalities are defined by means of quadratic forms). In this sufficient condition we can
interchange the matrices a anc b as well. Under these conditions, there exists a pair f1, f2 satisfying (3).
For n = 1, this pair can be written in the form (2). We omit the explicit formulas for functions f;, f;
from (3). We only note that these formulas involve Hermite’s polynomials and exponential functions.
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Absolute, Perfect, and Unconditional Convergence
of Double Series*

M. 1. Kadets UDC 514.52

A series )z, in a Banach space X is said to be absolutely convergent if the number series Y ||za||
converges, perfectly convergent if the series ) anz, .converges for any coeflicients a, = 1 (in this case
we write a € D), and unconditionally convergent if the series ) Zr(,) is convergent for any permutation
m: N — N of positive integers. The notions of perfect and unconditional convergence are equivalent. Each
absolutely convergent series converges perfectly; the converse is true if and only if X is finite-dimensional.
In the following, we use the Banach space Perf (X)) of perfectly convergent series in X equipped with the
norm sup{|| 3" anznl| : @ € D}. For these notions and facts, see [1].
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Let us consider double series. First, we give a definition of convergence for a double series; this definition
is somewhat stronger than the Pringsheim convergence.

Definition 1. A series y_ z;; in a Banach space X convergesto s € X if (a) each column series 3, z;;,
J € N, converges, (b) each row series ) j Tij» ¢ € N, converges, and (¢) the sequence of “rectangular”
partial sums converges to s:

s=lmsmp = lim{ZZx,j: min(m, n) — oo}.

=1 j=1
The notions of absolute, perfect, and unconditional convergence for double series, which are well-adapted
to the structure of these series, can be introduced as follows.
Definition 2. A series ) z;; is said to be absolutely convergent if the number series 3 ||z;;]| converges.

Definition 3. A series ) z;; is said to be perfectly convergent if for any a, 3 € D the series 3 zijaif;
converges.

Definition 4. The series ) z;; is said to be unconditionally convergent if for any permutations 7 and
o of positive integers the series ) Tn(i),»(j) converges.

The following statement characterizes perfect convergence in terms of linear operators.

Theorem 1. Consider a double series ) zi; in a Banach space X. The following conditions are
equivalent: (A) the series is perfectly convergent; (B) the vector-valued matriz A = (z;;) generates a
compact linear operator A: cg — Perf(X) by the formula Aej = {zi;}2,, 7 € N, where (e;) is the
canonical basts of the space co. The norm of this operator is given by

M(A) = sup{“ Zz,-ja;ﬁj ta,f € D}. (1)

The following two theorems describe the relationship between perfect, absolute, and unconditional
convergence for double series.

Theorem 2. A double series is perfectly convergent if and only if it is unconditionally convergent.
Theorem 3. There ezist double number series that converge perfectly but not absolutely.

Sketch of proof. We construct the desired counterexample using “blocks” obtained by normalizing
Walsh matrices appropriately. Recall that the Walsh matrix W, , n € N, is an orthogonal m x m matrix,
m = 2", all of whose entries are equal to 1. The sequence of Walsh matrices can be defined inductively

as follows:
_ 1 1 _ W] Wl
W]— <1 ~1), ‘/Vz—— <W1 —Wl) y etc.

The sum of absolute values of the entries of W, is N(W,) = m?. The functional (1) satisfies the
inequality M(W,) < m3/%. Let us introduce the matrices A, = m™?W,. Clearly, N(A,) = 1 and
M(A,) € 1/y/m. Consider the infinite block diagonal matrix A = (a;;) with diagonal blocks A,. The

double series correspording to this matrix converges perfectly (M(A) < /2 + 1), but not absolutely
(N(A) = c0).

Remark 1. Theorems 1 and 3 remain valid if we reject conditions (a) and (b) in Definition 1. However,
Theorem 2 fails in this case. A counterexample is given by the double series 3 a;;, where

arj = (=1)’, azj = ~ayj, a;; =0 for i>2, j€N.
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Remark 2. Although the notions of unconditional and absolute convergence of double series are dif-
ferent, the following statement is valid: if a series )_ a;; is unconditionally convergent, then the series
Y. a}; converges.
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On the Deformation Quantization, on a Kahler Manifold,
Associated with a Berezin Quantization

A. V. Karabegov UDC 517.9

In recent years, a series of papers [1-4] appeared in which the deformation quantization, on certain
classes of Kahler manifolds, arising from a Berezin quantization [5] was studied. On an arbitrary symplectic
manifold, the deformation quantization introduced in [6] can be constructed in many different ways [7-9].
In the present note, we give the construction of a deformation quantization on an arbitrary Kahler manifold
by using Fedosov’s approach [9] and indicate the relationship between this quantization and a Berezin one.
For all cases considered in [1—4], the deformation quantization coincides with that constructed in the
present paper.

1. Let us give the necessary definitions. A deformation quantization on a symplectic manifold M is
the structure of an associative algebra in the space of formal power series ¥ = C*°(M){[v]] in which the
multiplication * is given by a sequence of bidifferential operators {C.(-,-)}, r =0, 1,...; namely, for
f,g€TF weset frog=Y o0 v Cr(f,g), where

CO(f1g)=fg» Cl(fvg)_cl(gaf)=i{fag}v (1)

and {-,-} is the Poisson bracket on M which is naturally extended to F.

A (special) Berezin quantization on M is given by a family of associative algebras Ay C C*(M),
where the parameter A ranges over a set E of positive reals with limit point 0. Then in the product
[11ce An, with component-wise product *, one chooses a subalgebra U such that for an arbitrary element
f = f(k) € U, where f(k) € Aj, there exists a limit lims—o f(R) = ¢(f) € C°(M). The following
correspondence principle must hold: for f,ge U

o(fxg) =0(felg), @B (f*g—gx*f)) =i{a(f) 09} (2)

We can readily extend the Berezin definition of quantization to associate with it a deformation quanti-

zation. Assume that the algebra U is chosen in such a way that its elements f = f(k) can be expanded in

asymptotic series with respect to i — 0, with coefficients from C*®°(M), f ~ 5 72, A" f,. Define a map-

ping ¢: U — F by setting ¢(f) = Y oo v  fr- We say that the Berezin quantization is associated with a

deformation quantization (i.e., with the structure of an algebra) on ¥ if 9 is an algebra homomorphism.
In this case, the correspondence principle (2) follows from (1).

2. Let us now define a deformation quantization on an arbitrary Kéahler manifold. Let M be a Kahler
manifold, let dimg M = 2m, and let w be a Kahler form on M. For any open subset U C M we write
F(U) = C=(U)[[v]]. On F(U), there is an action of the formal series of differential operators. Let U be a
coordinate chart with coordinates z = (21,..., zm) on which a potential & = ®(z, Z) of the Kahler form
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