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On the Relationship between the Strong and Scalar Almost Periodicity 
of Banach Representations of the Group of Reals 

M. I. Kadets t  UDC 519.46 

We begin with the definition of the notions mentioned in the title. 

Def in i t ion  1. A bounded continuous function f ( t )  on the real line R with range in a Banach space X 
is said to be (strongly) almost periodic (a.p.) if the set. f ( t  + r ) ,  r E R,  of its translations is precompact 
in the uniform metric. For X = C we obtain the (Bochner) definition of a Bohr a.p. function. 

Def ini t ion  2. A function f :  R ~ X is said to be scalar a.p. if for each linear functional x* E X* the 
scalar function (x*, f ( t ) )  is a Bohr a.p. function. Sometimes a scalar a.p. function is said to be weakly 
a.p., however, this can lead to confusion with the Eberlein a.p. functions. 

Every a.p. function with range in X is scalar a.p. The converse holds if and only if X possesses the 
Schur property (the coincidence of the weak and strong convergence of sequences). 

Def ini t ion  3. A one-parameter strongly continuous group T(t) (t ~ R,  T(t l  + t2) = T( t l )T( t~) ,  
T(0) = I) of continuous linear operators acting on a Banach space X is said to be (strongly) a.p. if for 
any x q X the function T( t )x  with range in X is a.p. The group T(t) is said to be scalar a.p. if for 
every x ~ X and x* E X* the scalar function (x*, T(t)x)  is a Bohr a.p. function. 

In general, the above notions make sense for an arbitrary topological group Go (almost periodic repre- 
sentations of the group Go ; see [1]), but in this note we restrict ourselves to the case Go = R.  One of the 
reasons for this restriction is the absence of a theorem stating that  the spectrum of a scalar a.p. function 
on a group distinct from R is at most countable (see [4]). 

The following assertion is due to Yu. I. Lyubich: if X is weakly sequentially complete, then each scalar 
a.p. group acting on X is a.p. However, if X = c (c is the Banach space of all convergent number 
sequences), then there exists a scalar a.p. group that is not a.p. The following natural  question in the 
theory of functions with ranges in Banach spaces arises: what is the maximal class of Banach spaces for 
which the affirmative part  of the Lyubich assertion holds? This note gives a partial answer to this question. 

T h e o r e m .  Let a Banach space X have the following property: the weak* sequential closure of each 
of its separable subspaces Y in the second conjugate space Y** is separable. Then each scalar a.p. group 
acting on X is a.p. 

The b e g i n n i n g  o f  the  proof  of  the theorem.  Take an arbitrary element y0 ~ X and form the 
scalar a.p. function f ( t )  = T(t)yo.  Denote by Y the closed linear span  of the range of this function. 
Since the range of a scalar a.p. function is separable [3], Y is separable. Denote by E ,  E C Y**, the 
weak* sequential closure of the subspace Y in Y**. Because the spectrum of the function f ( t )  is at most 
countable [4], the compactification of the real axis R by this spectrum results in a precompact metric 
group whose completion G is a compact metric group. (The case of a purely periodic function f ( t )  for 
which the compactification transforms ll~ into a circle involves no additional difficulties.) The extension 
of the function f ( t )  to G turns out to be a weakly* continuous function with range in E .  The theorem 
will be proved if we establish the strong continuity of the extended function. Since the function under 
consideration is generated by the group T(t) ,  it suffices to prove its strong continuity at at least one point 
to ~ G (we preserve the notat ion f ( t )  for the extended function). 

To complete the proof, we need an assertion concerning special equivalent norms in separable Banach 
spaces. Let E be a separable Banach space and let F be a closed linear subspace of the conjugate 
space E*.  By means of F we define on E the seminorm p(e) = sup{](e*,e)t  : e* ~ F, [[e*[I < 1}. 

tPartially supported by the American Mathematical Society. 

Khartkov State Academy of Town Economy. Translated from Funktsional*nyi Analiz i Ego Prilozheniya, .Vol. 29, No. 4, 
pp. 75-~77, October-December, 1995. Original article submitted June 16, 1994. 

282 0016-2663/95/2904-0282 $12.50 (~)1996 Plenum Publishing Corporation 



The Oizmier characteristic of the subspace F is defined as follows: r(F) = inf{p(e) : e e E, I[ell = 1}. 
A subspace F is said to be norming if r(F) > 0; it is said to be 1-norming if r(F) = 1. 

Def in i t ion  4. Let E be a Banach space and let F be a subspace of E*. We will say that E has the 
property H(F) if the following two condition~ are satisfied: (K1)if  (~*, en) ~ @*, e) for'all e* ~ F, then 
liminf Ile,~lt >_ Ilell and (K2) if, in addition, we have Ile,~ll--+ Ilel[, then:l ie.  - e l l - + 0 .  

P r o p o s i t i o n  1. Let E be a separable Banach space and let P C E* be a norming subspace. Then 
on E there exists an equivalent norm with proper~y H(F) such that F is 1-norming with respect to this 
~ O r ~ .  

This is a sha[pening of the well-known theorem on equivalent norms with property H(F) (e.g., see 
[5, p. 176-184]). Proposition 1 m~kes it possible to prove the following assertion which is necessary to 
complete the proof of the theorem. 

P r o p o s i t i o n  2. Let E be a separable Banach space, let F C E* be a norming subspace, and let G 
be a compact metric space. Let f :  G ~ E be a F-weakly continuous .[unction. Then there exists a point 
to ~ G at which the .[unction f ( t ) is strongly continuous. 

The  c o m p l e t i o n  of  t he  p r o o f  of  the  t h e o r e m .  We have a separable B~nach space Y and its 
weak* sequential closure E in Y**, where E is separable by the condition of the theorem. As the 
norming subsp~ce F. we take the image of Y* under its natural embedding in E*. In the beginning 
o~ the proof we had a weakly* continuous function f ( t )  on a compact metric space G with range in a 
separable subspace E C Y**. I~ other words, we had a F-weakly continuous function on G with range 
in a separable space E.  Thus, it turns out that the assumptions of Propositio~ 2 hold, which guar~tees 
the existence of at least one point of strong continuity of the function f ( t ) .  By the above remark on the 
nature of the function f ( t ) ,  it turns out to be strongly continuous on G, ~nd this proves the theorem. 

It is ~lso possible to consider the problem oa the coincidence of the strong und scMar almost periodicity 
for group representations in arbitrary B~nach spaces. Here is a sample result [6]: In every Banach space 
a representation that is simultaneously scalar a.p. and weakly (Eberlein) a.p. is a.p. 

R e f e r e n c e s  

1. Yu. I. Lyubich, Introduction to the theory of Banach representations of groups [in Russian], Vishcha 
Shkola, Khar'kov (1985). 

2. Yu. I. Lyubich, Usp. Mat. Nauk, 18, No. 1,165-171 (1963). 
3. L. Amerio, Boll. Un. Mat. Ital., 20, 267-333 (1965). 
4. M. I. Kadets and K. D. Kyursten, Teoriya Funktsii, Funkts. AnM. Pril., No. 33, 45-49 (t980). 
5. C. Bessaga .and A. Pelczynski, Selected Topics in Infinite-DimensionM Topology, PWN, Warszawa 

(1975). 
6. M. I. Kadets and Yu. I. Lyubich, Teoriya Funktsii, Funkts. Anal. Pril., No. 53, 3-5 (1990). 

Translated by A. I, Shtern 

283 


