ON THE INTEGRATION OF ALMOST PERIODIC FUNCTIONS
WITH VALUES IN A BANACH SPACE

M. I. Kadets

A function x(t) (—« <t < =) with values in a Banach space E is said to be (strongly) almost periodic
if the set of its translates x,(t) = x(t+7) is relatively compact in the metric p (x, y) = sup || x(t) —y(®)|l.
t

Many of the results concerning numerical almost periodic functions carry over to abstract functions
(11, [2]. One of the exceptions is the integration theorem or Bohl-Bohr theorem (see [3], p. 29): if the in~
definite integral of a numerical almost periodic function is bounded, then it is also an almost periodic func-
tion,

We will say that a Banach space E has the Bohl-Bohr property if, for each almost periodic function
x(t) with values in E, the boundedness of the integral

X(t) =

L TN

x(n)dn 1)

implies that it is almost periodic.

It is well-known that the space ¢ (the space of all convergent numerical sequences) does not have the
Bohl-Bohr property [2]. Let us cite an appropriate example:
1 1>
x{f) = 4= cos— . 2
. ( ) {21 2 4 ( )
The integral of this function X(t) = {sin(t/2™)}7 is bounded but it is not an almost periodic function. It is
obvious that any space that contains a subspace isomorphic to ¢ does not have the Bohl-Bohr property. In
[2] and [4] the Bohl-Bohr property was established for certain classes of Banach spaces. The following
theorem, stated in [4] as a conjecture, gives a decisive solution of this problem.

THEOREM 1. A Banach space has the Bohl-Bohr prdperty if and only if it does not contain a sub-
space isomorphic to the space c. :

Let us note that our proof does not rely on the Bohl-Bohr theorem so that the latter turns out to be a
corollary to Theorem 1,

In connection with Theorem 1 there arises the question as to the restrictions that must be imposed
on the integral X(t) in an arbitrary Banach space for it to be an almost periodic function. It is already
known [1] that for this it is sufficient to require that the set of values of X(t) be strongly relatively compact.
We somewhat strengthen this assertion,

THEOREM 2. If x(t) is an almost periodic function and the set of values of the integral is weakly rel-
atively compact, then the integral X(t) is an almost periodic function.

Here we give a simpler proof than the one outlined in [4].
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We make an obvious' remark in order to facilitate later arguments. Let M and N be metric spaces
and let M; be a dense subset of M, Next let f be a mapping of M; into N, For each @ € M we can define the
oscillation of the function f:

osc(f, a, ) == sup p (f(a), [ (a")),

where the upper bound is taken over all a',a"¢€ M, such that p (ai, a) < £, Thus we can speak of the continu-
ity (or discontinuity) of the function at the point @ although the function is not defined at this point.

Let x(t) be an almost periodic function with values in E. We can use this function to introduce a new
metric p(t', t") = sup || x(t +t) —x(t +t") | on the real axis; with this metric, the axis becomes a metric
g

space J whose completion K is compact. .

It is well known that each function (numerical or abstract) defined on J and continuous at each point
of K is almost periodic if we regard it as a function defined on the axis.

We can regard the integral (1) of x(t) as a function defined on J whose value lies in E,

LEMMA 1. If the integral X(f) is continuous at some point %y of the compact space K then it is contin-
uous at each point of K,

Proof. Given an arbitrary € > 0 we define a neighborhood of the point ®y in which the oscillation of
X(t) is less than &/4; let 6 denote the radius of this neighborhood. We select a sequence {t(“) B, relative-
ly dense on the axis, such that p(t(n),')‘to) <6/2,0<t@*) —¢(M <7 = 7(5). The existence of such a sequence

is guaranteed by the almost periodic character of x(t). Let t;be an arbitrary point of J. We are going to
show that, in the neighborhood of t, with radius 6, = min{6/2; €/41}, the oscillation of the function X(t) is

less than €. In our selected sequence we take a point t™) for which t(M) <t < ¢m+1) | ye consider the
identity

&

X(O) =X (t) = (X(™ +0—X(E")-+ | [+ ) —x(midn, 3)
. ¢lm)

where t is an arbitrary point of the é;-neighborhood of t;, and 7=t —t,., The norm of the expression in

brackets does not exceed £€/4 hecause the points ™) 4 7 and ™M) lie in the d-neighborhood of Mot

pE™, ) <82, p(t™ + 1) <p ("™ + 1,0 +p (™ %) =0(t+ T £) = 0 (™, %,) < 8/2 + 8, < 6-
We are going to estimate the norm of the second term:
it

|
i \ e+ —xdn | <(h— l"’”)sg‘p -2 1) — x| <! o, 0) < 18, < &/4.
#{m)

Thus, || X(t) ~X(te) || <€/2, and so the oscillation of X(t) is less than €. Since &; does not depend on the
choice of tg € J, X(t) is uniformly continuous on J, and so on K,

LEMMA 2, If in the Banach space E there is a nonconvergent series 2 Xk, all the partial sums of
which are bounded

S <4<
then E contains a subspace isomorphic to c.
This result is due to A, Pelczynski [5] (see also [6]).

LEMMA 3. If a function F(s) with values in a Banach space is weakly continuous on some compact S,
then on S there is at least one point where F(s) is strongly continuous.

This result is due to I. M, Gel'fand [7].

Proof of Theorem 1. Let us assume that the integral X(t) is not an almost periodic function but that
IXt | = G < . By Lemma 1 the function X(t) is discontinuous at the zero of the set J. We form a se-
quence {tp }{ = J such that
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n—1

I X >a>0, o(t,0) [t 27. 4
k=1
Let 7k =ty (k =1, 2, ..., m) be arbitrary terms of the sequence {tn}. We consider the identity

m T Tt FTpy .
x(z ) zx r,,)—S[x(q Lo1y) — x(n)dn - \ [x(n+ )—«x(n)ldn»*...--}« \ (x(m + tw) —x()ldy, (5)

1 )

which, as well as the identity (3), follows directly from (1). By (4) and (5) we obtain that =G+1

S X (v

<%, Thus, the vectors X(tp) (n =1, 2, ...) form a divergent series whose partial sums are bounded. Hence,
by Lemma 2, E contains a subspace isomorphic to ¢c. Example (2) given above testifies to the validity of
the second part of the theorem.

Proof of Theorem 2. Suppose that x(t) is an almost periodic function and that the set of values of
X(t) is weakly compact (and hence is bounded). We take an arbitrary linear functional f€ E* and apply it -
to x(t) and to X(t):

@ 0) = <, X (1) = 5 x(n) dny = S fox(nsdn ~ § g () an

The function ¢(t) = (£, x(t)) is almost periodic and
o) — o) <IFN - [Fx &) —x (). (6)

By the Bohl-Bohr theorem ®(t) is an almost periodic function. It follows from (6) that it is uniformly con-

tinuous on J. In other words, the function X(t) is weakly uniformly continuous on J, Because the set of

values of X(t) is weakly compact we can extend the definition of this function to K as the weakly continuous

function X(n) = w-li;n X(ty) (p{tn; W) = 0), where "w-lim" denotes the weak limit. According to Lemma 3,
n—.

X(1) has at least one point of strong continuity and, consequently, by Lemma 1, it is strongly continuous on
K. This in turn means that X(t) is almost periodic.
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