PROOF OF THE TOPOLOGICAL EQUIVALENCE OF ALL SEPARABLE
INFINITE-DIMENSIONAL BANACH SPACES '

M. I. Kadets

In 1928, Fréchet [1] raised the question: are all separable infinite-dimensional Banach spaces ho-
meomorphic ? In 1929, S. Mazur [2] proved that all spaces Lp and I (1 = p< =) are homeomorphic. This
was historically the first example of not isomorphic, but homeomorphic, Banach spaces. In 1933, S. Kacz~
marz generalized Mazur's result to Orlich space [3]. Banach [4] repeated Fréchet's question, and con-
centrated on certain particular cases of this problem. From 1932 until 1953, only one paper [5] related
to the Fréchet-Banach problem was published.

From 1953 to 1960, the author of the present paper published a number of notes [6~-11], in which the
homeomorphism of certain separable B-spaces was established. The result of [9] — the homeomorphism
of all separable conjugate B-spaces — was simultaneously obtained by Klee [12]. The results of [6-9, 11
and 12] were established via two methods, which we can call: the method of equivalent norms and the
method of coordinates. In 1960, Bessaga and Pelczynski [13] proved the following theorem:

If an infinite-dimensional separable B-space contains a subspace homeomorphic to I,, or allows a
linear continuous mapping onto a space homeomorphic to I,, then X is homeomorphic to 7,.

The method used by Bessaga and Pelczynski is due to Borsuk [14] and may be called the method of
expansion.

The present paper is devoted to the detailed proof of a theorem which supplies a positive answer to
the Fréchet-Banach problem:

THEQOREM. All separable infinite-dimensional Banach spaces are topologically equivalent.
For the proof of the theorem, all the methods of proof just cited will be utilized.

In shortened form, this proof was published in [15], and was presented at the International Congress
of Mathematicians at Moscow.

We shall not touch here on the broader problems of topological classification of F-spaces and their
subsets. The basic results and the open questions relating to these problems were included in a synoptic
paper of Bessaga [16] (cf., also, the abstracts of the papers of Bessaga, Pelczynski, and Klee, and the paper
of Anderson at the Congress). ‘

§1. EQUIVALENT NORMS

Let X be a real B-space with basis {ex};; we denote by {fi}{ a system of linear functionals con-
jugate to the basis. Thus, each element x € X is represented in the form

X = i Fe(x) e
k=1

We introduce the further notation:
Sal) =3 fe@ew  Rux= 3 fe(x)ew

k=1 © kR=n+1

While denoting the original norm of space X by [ - ll;, we introduce the equivalent norm:
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é fe(x)ex

m+1

1%l = sup

a

As is easily verified, the norm | - ll; possesses the following monotonicity property: forallm,n (1= m<n=c)
and for all coefficients A,

n n4-1
2 *’*‘"’l S| 2 deel- @
m41 - m
We introduce the following equivalent norm by:
Hell,= Z 2™ {l Rax s 2)

n==0

This norm retains property (1). We now prove that, in addition, it satisfies the conditions: if for some
xy and x

eiglofn(xv)=fn(x) n=12, .. )

then

li vl > :

T}T“;Hx fla = x|, @
and if, in addition to (3), there holds the following condition

Il_rgo “ Xyl = ”x“fp (5)
then

lim |y —x}l; =0. (6)

In other words, the unit solid sphere U {]| x llL=1} is closed with respect to coordinatewise convergence,
while on the unit spherical surfaces § {I x Ilz =1}, coordinatewise convergence coincides with strong con-
vergence.

LEMMA 1. It follows from conditions (3) that
Ii_r'q | Raxe | > N Rax |1, (n=0,1,2 ... (7')
Proof. We fix n, and take some arbitrary £ > 0. We choose m so large that

) Rox — Suox |y < - ®)

Further, we choose ¥, such that, for all v=y,,
|| SnRaty — SuRux 1y < 5 - (9)
We thus find from (8) and (9) that

| Rox — SmRuxv fl, e



which means
| Rox I, — & <l SmRnxy Il Kl Raxw s

and this proves the lemma.

Property (4) follows from (2) and (7). Confronting (2), (5) and (7), we see that conditions (3) and (5)
entail the following system of equations:

lim | Rexyfly = [| Rexlly  (2=0,1,2, ...). (10)
LEMMA 2. The set {x,}, subject to condition (10), is compact.
Proof. Assigning some & > 0, we define n;, and then v, such that
u Rﬂox "1< % ) “ R"nx\’ - Rﬂox “ < ’;— (‘V > vo)v

whence
“ Raxy “1 e (v> Vo).

We replace ny by a larger subscript, n;, such that the last inequality is extended to v<v,. In accordance
with the monotonocity condition (1) for the basis, we obtain
HRux: |, <le (v=1,2, .5 n>n,(e),

i.e., the norm of the remainder of the basis expansion tends to zero as n— «, uniformly in ». The proof
is completed by citing the criterion for compactness in B-spaces with bases [17, page 247].

Compactness of the sequence {xy}, in conjuction with coordinatewise convergence, entails strong
convergence. Thus, the properties of norm || - ||, are verified. This norm was introduced in [18].

Finally, we construct the equivalent norm || - | which will occur in what follows:

Il =VixE+r s Jw=) 32 (_llfkll-.,)' -

It is obvious that this norm also has property (1). We now verify that, for it, (6) again follows from (3)
and (5). Indeed, let (3) hold and

m x| = {0 (52)
It follows from the definition of J(x) that

lim J (6} > J (x).

v 12)
Since, in addition, (4) follows from (3) then, confronting (4), (12), (11) and (5a), we see that

l'im:o “ Xy “z = “ X “z (5)
and this means that, from the properties of norm |- [}, (6) holds. Since the norms [ - || and || - [l, are equiv-

alent,

lim ||y — x|l =0.
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Definition. A Banach spaceis called locally uniformly convex if, from the conditions

fell=lxll=1 limjx +x|| =2 (13)
it follows that

lim || xy — x || =0.
V=0

We now prove that space X is locally uniformly convex with respect to the norm of (11). In accor-
dance with (11), we rewrite conditions (13) in the form

Bxolls + 2 00) = x| 4+ 20 =1, (14)
lim [|lxy + 2|5 + J2(xy + %)) =4. (15)
We add the two evident relationships:

Sty —x) + % (xy 1 x) =2 [J2 (xs) 4 T3 (x)),
ey +xlE<<200 % II: + B ":]

and obtain

Sy —x) + e + x5+ 02 e+l <2 Mxe 2 £ +20 x| + 2 (x) (16)
Confronting (14), (15) and (16), we obtain

lim J (xy —x) =0. amn

It follows from (17) that

lif;J () = J (x); lim fa(ry) = falxy  (n=1,2,..)) (18)

By scrutinizing (14) and the first of conditions (18), we see that

fim flay ]| = [l ], , ®)

For || - [l, from coordinatewise convergence and convergence of the norm follow strong convergence, which
also proves the locally uniform convexity of space (X, || - [). The norm of (11) was considered in [19].
Proof of the equivalence of all the norms considered here presents no difficulty.

Summarizing all we have proven in this section, we have

ASSERTION 1. In a Banach space with basis {ex}y, there exists an equivalent norm, [|-Il, possess-
ing the following properties:

a) the basis with respect to this norm is orthogonal:

n—i n
lzakek < Zakek (@=0,n=12 ..)%
k=1 k=1

b) on the unit spherical surface, coordinatewise convergence coincides with convergence in norm;

¢) the space is locally uniformly convex.
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§2. LOCAL MODULES OF CONVEXITY

Consider the functional

08 == sup fx—z] (xll=1 0<8< D), (19)
2 26G( x.8)
where
G(x, 8) = {z: el <t min e+ (1=02(> 1—5} 20
For all §, the local module of convexity, w(x, 0), satisfies the inequalities
<o Lo d)Sok =1 <3<
If the space is locally uniformly convex, then
Li_rgm(x, §) =0. @1
LEMMA 3. A local module of convexity satisfies the conditions
omd+h ok <T  @<I<I+A<), 22)
o< Tlr—pl+o@do+x—yl) O<OS+x—y <. 23)

Proof. In accordance with the definition of a local module of convexity, it suffices to verify inegual-
ity (22) for an arbitrary two-dimensional section of the unit sphere containing the center of the sphere and
the point x. Reduction to a two-dimensional space allows us to have recourse to illustrations. Figure 1
represents concentric spheres of radii 1 and 1-6. The set G(x, §) is cross-hatched. The distance from
the line xz, to the center, 6, equals 1-§-h. It is necessary to find an upper bound for the difference [x—z; |~
Ix—zll. We introduce the coordinate system: the 6 axis passes through point v of the tangent chord xz
and the inner circle; the 6n axis is parallel to chord xz. We give now the coordinates of the points we

shall need:

x(1—6, o*); y(1—9, — o),
u(l—98,, 0); v(1—2<, 0); w(l, 0),

where w' and w™ are the lengths of segments xv and vz such that

<" L 8O +h o + 0 =20

Figure 2 shows the unit sphere which is "worst" for the given w* and §: on it, |lx—z,]| attains the
greatest of its possible values. Using the ordinary tools of affine analytic geometry (we omit the corre-

7

N

Fig. 1

sponding horrendous computations), we can obtain

“x_21“=2min{]; o 15 , (1——6—h)tu++h},

—6 Sot — hw™

whence, after a number of transformations designed to eliminate the quantities
w*t and w™ and to simplify the resulting expressions, we arrive at inequality
(22).

It is more convenient to establish ineguality (23) analytically. Let x and y be
close points on the unit sphere (||x—y|l<1—§). From the inequality

Ay + (=M z[| > A+(1—=Nz| —Alx—y || S T=G+{[x—g) O<AL
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follows the set inclusion

7
G(x, TG 3+ x—yl).
Z
wl\zr from whence, in accordance with the definition of w(x, §), we obtain inequality (23).
4 [ ¢ From (22), (23) and (21) follows immediately the following, which we shall
need in the sequel: .
% ASSERTIOle. In any Banach space, a local module of convexity w(x, §) is
wiiformly continuous on the set S x {§,: 1] (S is the unit sphere of the space). If

Fig. 2 the space is locally uniformly convex, then w(x, §) is, moreover, continuous on
the set S x [0; 1] (0<54< 1).
The results of this section were obtained by the author in collaboration with V. I. Gurarie.

§3. AUXILIARY CONSTRUCTIONS

On the unit solid sphere of space X we construct the. functional

Ox) =0 (’— 1—nxu); DO =1.

=y’ (24)

It follows from the results of §2 that this functional is continuous on the unit sphere U {lx]| =1} and is
uniformly continuous on each sphere U {[|x||=< 1~ 5,}; on the unit sphere, the functional ®(x) = 0, and inside
it, the following inequality is valid '

I—jx|<PE)<L L

LEMMA 4. If the numbers {z}7 are such that

ImO6) =0 (5= Saws). | (25)

then the series Zagex converges.

Proof. It follows from conditions (1) and (25) that

Is I <sll < - tim s =1. (26)

we now show that, for any n, all elements sy, (m =n) lie in the set G(sp/llsnll; 1— llsp|l). Indeed,

HAse s hsa A (—2)8al| > N Ase - {8l + (I=A)sp ] = sl - Alsall T+ (A=W fse]] O<ALD,

whence the requisite inclusion also follows. Condition (25) means that the diameter of the set G(s,/llspll;
1~ lIsp 1)) tends to zero as n— ~. This means that the sequence {sp}¥ is fundamental and, thus, the series
Zagek converges to some normal element. '

For each element x € U{|lx[|=< 1}, we consider the broken line (generally speaking , infinitely seg-
mented), successively linking the points 6, 8;x, S;x, ...; we add to this the element x itself, and we denote
by L(x) the closed set thus obtained (homeomorphic to a segment). We define the functional F(x), which
will participate in subsequent constructions:

F@ = (1= Zlx1) min 0@ (el <) @7

This functional is continuous, satisfies the inequality
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(I— %”x H) (=P PD<FH<L
and vanishes on the unit sphere.

We shall now prove that Lemma 4 also holds for functional F(x). Let

n-»oo

n

lim F (s,) =0 (s,,': Zakek) .
)3

This means that, for each n, we can find v = v(n) = n such that

lim ® (sy—; + Avey) =0 O<I M <l ay)).

n—>00

According to (26), v increases without bound as n increases. Repeating almost word for word the dis-
cussion of Lemma 4, we find that the expression s, -4 + Ayep tends with increasing ¥ to some normed
element, the basis expansion of which is the series Zagek.

ASSERTION 3. On the unit sphere of space X it is possible to define a continuous functional, F(x),
possessing the following properties: :

a) F(x)>0 for [xll<1; F(x) =0 for |x]| =1; F(8) =1;

b) if lim F (Zakek) =0, then the series Zaye) converges;
1

¢) for fixed n and {ak}?_i, the function
n—i

(o) = F(z aser + aen)

1

is strictly increasing for « < 0 and is strictly decreasing for a > 0.

Proof. F(x) defined by formula (27) is such a functional. Properties (a) and (b) are already estab-
lished. Let us prove (c). Let |ayl<la,|; aya, 20, Then,

Il Sn—1 -+ o6 || < Il Sn—r + 248 || (28)

by virtue of the orthogonality of the basis, and
L (8n—1 4 2)€x) C L (Sn—1 + o), 29)
by definition of the set L(x). From (27)-(29) we get ¢ (ag) > ¥ (@y).

§4. HOMEOMORPHISM OF SPACES WITH BASES

To each normed element x € X we put into correspondence the numerical sequence

Ba (x) = [F*(Snyx) — F2(Spx)] sign fa(x)  (n=1,2, ...). (30)

ao
LEMMA 5. If x is an element of the unit sphere, then 4 (x)=1.  For any real numbers {hp}T sub-

N 1
ject to the condition that Ehf1 =1, we can find a unique normed element x such that

Ba(x)=hs  (n=1,2, ..)).
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Proof. The first part of the lemma is directly verified. We turn to its second part. We choose the
coefficient a; such that
1— F2(a,e,) = Hj, signa, = signh,. (314)

When the coefficients {ak}I}"1 are all defined, we then define a, from the conditions

F2(sp_y) — F?(sn_y + aqe,) = R, signa, = sign h,. (31p)

According to property (c) of functional F(x), each coefficient, ax, is determined uniquely. Adding (31y) and
taking into account the condition that Zh§ = 1, we convince ourselves that limwF(sn) = 0. This means that,
n—

by property (b), the series Zagex converges, and its sum is the normed element x being sought.

LEMMA 6. The normed sequence x;, converges to the element x if and only if

lm h(x) = ha(x) (n=1,2, ..)) (32)
v =00
Proof. If x,,~~x, then (32) is a consequence of the continuity of F(x). Now, let (32) hold. Considering
this equation successively for n =1, 2, ..., we convince ourselves that 11m fn(xu) =fnx (n=1, 2, ..).
Since, moreover, |x,ll = lixll =1 then, according to property (), the norms of space X, xp—X.
ASSERTION 4. Space X is homeomorphic to space ,.

Proof. It follows from Lemma 5 that, by putting into correspondence with each normed element
x € X the sequence of its coordinates

Hx = tha(x)haz (12l =1),
we arrive at a one-to-one correspondence between the spheres of spaces X and I,. We now prove that this
correspondence, H, is a bomeomorphism. We note, for this, that the natural norm of space I, satisfies

conditions a)-c) of Assertion 1, and that in I, one can set F(y) =V1-[[y[¥. We now consider the convergent
sequence of normed elements of space X:

lime, =5 sl =l =1, | (33)

It follows from (33) that lim hp(x,) =hy(x) n=1,2...), whence, according to correspondence H,
Y—+o0

im hq(4y) = ha(y) (yy = Hxy; y= Hx). (34)
V00 .
According to Lemma 6, it follows from (34) that lim y,, =y, which proves the continuity of mapping H.
Y~
Continuity of the inverse mapping, H™!, is proven analogously.
Homeomorphism H is extended from spheres to the entire space by the formula

y=llx\ - Hx /<) HO =8  (x€X; y€l,).

Since equivalent changes of norms of a B-space do not affect its topology, it then follows from As-
sertion 4 that all infinite-dimensional B-spaces with bases are topologically equivalent.

§5. HOMEOMORPHISM OF ALL SEPARABLE INFINITE-DIMENSIONAL B-SPACES

It is now necessary to extend the result of Assertion 4 to spaces without bases (so far, their exis-
tence has been neither proven nor even verified).

Since each infinite-dimensional B-space contains an infinite-dimensional subspace with a basis, the
target homeomorphism follows from the Bessaga-Pelczynski theorem formulated in our introduction.
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For completeness of exposition, we shall prove the result we need here.

We introduce the product of B-spaces with a countable or finite number of factors:
Z=2,X2Z,XZ;X ...
This is a B-space, the elements of which are the sequences
2={2, 2,25 ...}, 2,€2, Li_rf]mu z. || =0,
with the norm ||zl = max lizpll, and with term-by~term addition and multiplication by a scalar. We note
the following isometric (and, moreover, homeomorphic) correspondence:

Co==Cy X Cu==Cy X € X €y X ..oy (35)

where c, is the B-space of all numerical sequences which converge to zero.

We now state without proof the assertion of {12], which is a simple corollary of the Bartle-Graves
theorem [20].

LEMMA 7. If Z is a Banach space and Z, a subspace of it, then
Z~Z xX2/Z,

(where the symbol ~ denotes homeomorphism).

Finally, we consider an infinite-dimensional separable B-space, X, with no additional constraints
imposed. Let Y be its infinite-dimensional subspace with a basis; we denote by Z the factor-space X/Y.
Since spaces c; and C (the spaces of functions continuous on segments) have bases, then

Y ~C gy X €g~Cy X €y X G X .. (36)
By using Lemma 7 and relationship (36), we obtain
XY XZ~(eg X)X ZmCy X (g X ZY~Cy X (Y X Z)~C < X. 37
Since C is a universal space ([17], page 256), it contains a subspace, X;, isometric to X. Therefore,
C~XXW~c, (W=C/X,). (38)
From (36) and (38), we get

Crg XXX oo ~(XXW)XXXWyx(XXW)yx ...
~XXWXxX)XW XXX oo ~XX{gXegXe X ...)j~XxC. 39)

Taking both (37) and (39) into account, we arrive at the required homeomorphism:
X~C.

We have thus proven that all separable infinite-dimensional Banach spaces (with bases or without
them) are homeomorphic.
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