PROOF OF THE TOPOLOGICAL EQUIVALENCE OF ALL SEPARABLE INFINITE-DIMENSIONAL BANACH SPACES

M. I. Kadets

In 1928, Fréchet [1] raised the question: are all separable infinite-dimensional Banach spaces homeomorphic? In 1929, S. Mazur [2] proved that all spaces L_p and l_p ($1 \le p < \infty$) are homeomorphic. This was historically the first example of not isomorphic, but homeomorphic, Banach spaces. In 1933, S. Kaczmarz generalized Mazur's result to Orlich space [3]. Banach [4] repeated Fréchet's question, and concentrated on certain particular cases of this problem. From 1932 until 1953, only one paper [5] related to the Fréchet-Banach problem was published.

From 1953 to 1960, the author of the present paper published a number of notes [6-11], in which the homeomorphism of certain separable B-spaces was established. The result of [9] – the homeomorphism of all separable conjugate B-spaces – was simultaneously obtained by Klee [12]. The results of [6-9, 11 and 12] were established via two methods, which we can call: the method of equivalent norms and the method of coordinates. In 1960, Bessaga and Pelczynski [13] proved the following theorem:

If an infinite-dimensional separable B-space contains a subspace homeomorphic to l_2 , or allows a linear continuous mapping onto a space homeomorphic to l_2 , then X is homeomorphic to l_2 .

The method used by Bessaga and Pelczynski is due to Borsuk [14] and may be called the method of expansion.

The present paper is devoted to the detailed proof of a theorem which supplies a positive answer to the Fréchet-Banach problem:

THEOREM. All separable infinite-dimensional Banach spaces are topologically equivalent.

For the proof of the theorem, all the methods of proof just cited will be utilized.

In shortened form, this proof was published in [15], and was presented at the International Congress of Mathematicians at Moscow.

We shall not touch here on the broader problems of topological classification of F-spaces and their subsets. The basic results and the open questions relating to these problems were included in a synoptic paper of Bessaga [16] (cf., also, the abstracts of the papers of Bessaga, Pelczynski, and Klee, and the paper of Anderson at the Congress).

§ 1. EQUIVALENT NORMS

Let X be a real B-space with basis $\{e_k\}_1^{\infty}$; we denote by $\{f_k\}_1^{\infty}$ a system of linear functionals conjugate to the basis. Thus, each element $x \in X$ is represented in the form

$$x = \sum_{k=1}^{\infty} f_k(x) e_k.$$

We introduce the further notation:

$$S_n(x) = \sum_{k=1}^n f_k(x) e_k; \quad R_n x = \sum_{k=n+1}^{\infty} f_k(x) e_k.$$

While denoting the original norm of space X by $\|\cdot\|_0$, we introduce the equivalent norm:

Kharkov Institute for Public Construction Engineering. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 1, No. 1, pp. 61-70. Original article submitted October 9, 1966.

$$||x||_1 = \sup_{m,n} \left\| \sum_{m+1}^n f_k(x) e_k \right\|_2$$

As is easily verified, the norm $\|\cdot\|_1$ possesses the following monotonicity property: for all m, n $(1 \le m < n \le \infty)$ and for all coefficients λ_k ,

$$\left\|\sum_{m+1}^{n} \lambda_k e_k\right\| \leq \left\|\sum_{m}^{n+1} \lambda_k e_k\right\|. \tag{1}$$

We introduce the following equivalent norm by:

$$||x||_2 = \sum_{n=0}^{\infty} 2^{-n} ||R_n x||_1.$$
 (2)

This norm retains property (1). We now prove that, in addition, it satisfies the conditions: if for some x_{ν} and x

$$\lim_{v \to \infty} f_n(x_v) = f_n(x) \quad (n = 1, 2, \ldots),$$
(3)

then

$$\lim_{V \to \infty} \|x_V\|_2 \ge \|x\|_2; \tag{4}$$

and if, in addition to (3), there holds the following condition

$$\lim_{v \to \infty} \|x_v\|_2 = \|x\|_2,\tag{5}$$

then

$$\lim_{v \to \infty} \|x_v - x\|_2 = 0. \tag{6}$$

In other words, the unit solid sphere U $\{\|x\|_2 \le 1\}$ is closed with respect to coordinatewise convergence, while on the unit spherical surfaces S $\{\|x\|_2 = 1\}$, coordinatewise convergence coincides with strong convergence.

LEMMA 1. It follows from conditions (3) that

$$\lim_{N \to \infty} \| R_n x_v \|_1 \ge \| R_n x \|_1 \qquad (n = 0, 1, 2, \ldots). \tag{7}$$

Proof. We fix n, and take some arbitrary $\varepsilon > 0$. We choose m so large that

$$||R_n x - S_m R_n x||_1 < \frac{\varepsilon}{2}. \tag{8}$$

Further, we choose ν_0 such that, for all $\nu \ge \nu_0$,

$$||S_m R_n x_v - S_m R_n x||_1 < \frac{\varepsilon}{2}.$$
 (9)

We thus find from (8) and (9) that

$$||R_n x - S_m R_n x_v||_1 < \varepsilon$$

which means

$$||R_n x||_1 - \varepsilon < ||S_m R_n x_v||_1 \le ||R_n x_v||_1$$

and this proves the lemma.

Property (4) follows from (2) and (7). Confronting (2), (5) and (7), we see that conditions (3) and (5) entail the following system of equations:

$$\lim_{n\to\infty} \|R_n x_n\|_1 = \|R_n x\|_1 \qquad (n=0, 1, 2, \ldots).$$
 (10)

LEMMA 2. The set $\{x_{\nu}\}$, subject to condition (10), is compact.

<u>Proof.</u> Assigning some $\varepsilon > 0$, we define n_0 , and then ν_0 , such that

$$||R_{n_0}x||_1 < \frac{\varepsilon}{2}; ||R_{n_0}x_v - R_{n_0}x|| < \frac{\varepsilon}{2}$$
 $(v \geqslant v_0),$

whence

$$||R_{n_0}x_v||_1 < \varepsilon$$
 $(v \geqslant v_0)$.

We replace n_0 by a larger subscript, n_1 , such that the last inequality is extended to $\nu < \nu_0$. In accordance with the monotonocity condition (1) for the basis, we obtain

$$||R_n x_v||_1 < \varepsilon \ (v = 1, 2, \ldots; \ n \geqslant n_1(\varepsilon)),$$

i.e., the norm of the remainder of the basis expansion tends to zero as $n \rightarrow \infty$, uniformly in ν . The proof is completed by citing the criterion for compactness in B-spaces with bases [17, page 247].

Compactness of the sequence $\{x_{\nu}\}$, in conjuction with coordinatewise convergence, entails strong convergence. Thus, the properties of norm $\|\cdot\|_2$ are verified. This norm was introduced in [18].

Finally, we construct the equivalent norm $\|\cdot\|$ which will occur in what follows:

$$||x|| = \sqrt{||x||_2^2 + J^2(x)}; \quad J(x) = \sqrt{\sum_{1}^{\infty} 2^{-k} \left(\frac{f_k(x)}{||f_k||_2}\right)^2}.$$
 (11)

It is obvious that this norm also has property (1). We now verify that, for it, (6) again follows from (3) and (5). Indeed, let (3) hold and

$$\lim_{\mathbf{v}\to\infty}\|x_{\mathbf{v}}\|=\|x\|. \tag{5a}$$

It follows from the definition of J(x) that

$$\lim_{V \to \infty} J(x_{v}) \geqslant J(x). \tag{12}$$

Since, in addition, (4) follows from (3) then, confronting (4), (12), (11) and (5a), we see that

$$\lim_{v \to \infty} \|x_v\|_2 = \|x\|_2 \tag{5}$$

and this means that, from the properties of norm $\|\cdot\|_2$, (6) holds. Since the norms $\|\cdot\|$ and $\|\cdot\|_2$ are equivalent,

$$\lim_{\mathbf{v}\to\infty}\|x_{\mathbf{v}}-x\|=0.$$

Definition. A Banach space is called locally uniformly convex if, from the conditions

$$||x_{\mathbf{v}}|| = ||x|| = 1, \quad \lim_{\mathbf{v} \to \infty} ||x_{\mathbf{v}} + x|| = 2$$
 (13)

it follows that

$$\lim_{v\to\infty}||x_v-x||=0.$$

We now prove that space X is locally uniformly convex with respect to the norm of (11). In accordance with (11), we rewrite conditions (13) in the form

$$||x_{v}||_{2}^{2} + J^{2}(x_{v}) = ||x||_{2}^{2} + J^{2}(x) = 1,$$
(14)

$$\lim_{v \to \infty} \left[\|x_v + x\|_2^2 + J^2(x_v + x) \right] = 4. \tag{15}$$

We add the two evident relationships:

$$J^{2}(x_{v} - x) + J^{2}(x_{v} + x) = 2 [J^{2}(x_{v}) + J^{2}(x)],$$

$$||x_{v} + x||_{2}^{2} \le 2 [||x||_{2}^{2} + ||x_{v}||_{2}^{2}]$$

and obtain

$$J^{2}(x_{v}-x)+[\|x_{v}+x\|_{2}^{2}+J^{2}(x_{v}+x)] \leq 2[\|x_{v}\|_{2}^{2}+J^{2}(x_{v})]+2[\|x\|_{2}^{2}+J^{2}(x)]. \tag{16}$$

Confronting (14), (15) and (16), we obtain

$$\lim_{\mathbf{v} \to \infty} J(\mathbf{x}_{\mathbf{v}} - \mathbf{x}) = 0. \tag{17}$$

It follows from (17) that

$$\lim_{v \to \infty} J(x_v) = J(x); \lim_{v \to \infty} f_n(x_v) = f_n(x) \qquad (n = 1, 2, ...).$$
 (18)

By scrutinizing (14) and the first of conditions (18), we see that

$$\lim_{v \to \infty} \|x_v\| = \|x\|_2. \tag{5}$$

For $\|\cdot\|_2$, from coordinatewise convergence and convergence of the norm follow strong convergence, which also proves the locally uniform convexity of space $(X, \|\cdot\|)$. The norm of (11) was considered in [19]. Proof of the equivalence of all the norms considered here presents no difficulty.

Summarizing all we have proven in this section, we have

ASSERTION 1. In a Banach space with basis $\{e_k\}_{1}^{\infty}$, there exists an equivalent norm, $\|\cdot\|$, possessing the following properties:

a) the basis with respect to this norm is orthogonal:

$$\left\| \sum_{k=1}^{n-1} a_k e_k \right\| < \left\| \sum_{k=1}^n a_k e_k \right\| \qquad (a_n \neq 0; \ n = 1, 2, \ldots);$$

- b) on the unit spherical surface, coordinatewise convergence coincides with convergence in norm;
- c) the space is locally uniformly convex.

Consider the functional

$$\omega(x, \delta) = \frac{1}{2} \sup_{z \in G(x, \delta)} ||x - z|| \quad (||x|| = 1; \ 0 \le \delta \le 1), \tag{19}$$

where

$$G(x, \delta) = \left\{ z : \|z\| \le 1; \quad \min_{0 \le \lambda \le 1} \|\lambda x + (1 - \lambda)z\| \ge 1 - \delta \right\}$$
(20)

For all δ , the local module of convexity, $\omega(x, \delta)$, satisfies the inequalities

$$\delta \leqslant \omega(x, \delta) \leqslant \omega(x, \delta_1) \leqslant \omega(x, 1) = 1$$
 $(\delta \leqslant \delta_1 \leqslant 1)$.

If the space is locally uniformly convex, then

$$\lim_{\delta \to 0} \omega(x, \delta) = 0. \tag{21}$$

LEMMA 3. A local module of convexity satisfies the conditions

$$\omega(x, \delta + h) - \omega(x, \delta) \leqslant \frac{2h}{\delta^2} \qquad (0 < \delta \leqslant \delta + h \leqslant 1), \tag{22}$$

$$\omega(x,\delta) \leqslant \frac{1}{2} \|x - y\| + \omega(y,\delta + \|x - y\|) \quad (0 < \delta < \delta + \|x - y\| \leqslant 1). \tag{23}$$

<u>Proof.</u> In accordance with the definition of a local module of convexity, it suffices to verify inequality (22) for an arbitrary two-dimensional section of the unit sphere containing the center of the sphere and the point x. Reduction to a two-dimensional space allows us to have recourse to illustrations. Figure 1 represents concentric spheres of radii 1 and 1- δ . The set $G(x, \delta)$ is cross-hatched. The distance from the line xz_1 to the center, θ , equals 1- δ -h. It is necessary to find an upper bound for the difference $||x-z_1|| - ||x-z||$. We introduce the coordinate system: the $\theta\xi$ axis passes through point v of the tangent chord xz and the inner circle; the $\theta\eta$ axis is parallel to chord xz. We give now the coordinates of the points we shall need:

$$x(1-\delta, \omega^+); y(1-\delta, -\omega^-); u(1-\delta_1, 0); v(1-\hat{c}, 0); w(1, 0),$$

where ω^+ and ω^- are the lengths of segments xv and vz such that

$$\delta \leqslant \omega^{\pm} \leqslant 1$$
; $\delta \leqslant \delta_1 \leqslant \delta + h$; $\omega^+ + \omega^- = 2\omega$.

Figure 2 shows the unit sphere which is "worst" for the given ω^{\pm} and δ : on it, $\|x-z_1\|$ attains the greatest of its possible values. Using the ordinary tools of affine analytic geometry (we omit the corresponding horrendous computations), we can obtain

Fig. 1

$$||x-z_1|| = 2\min\left\{1; \ \omega \cdot \frac{\delta}{1-\delta} \cdot \frac{(1-\delta-h)\omega^+ + h}{\delta\omega^+ - h\omega^-}\right\},\,$$

whence, after a number of transformations designed to eliminate the quantities ω^+ and ω^- and to simplify the resulting expressions, we arrive at inequality (22).

It is more convenient to establish ineguality (23) analytically. Let x and y be close points on the unit sphere ($||x-y|| < 1-\delta$). From the inequality

$$\|\lambda y + (1-\lambda)z\| \ge \|\lambda x + (1-\lambda)z\| - \lambda \|x - y\| \ge 1 - (\delta + \|x - y\|) \ (0 \le \lambda \le 1)$$

follows the set inclusion

$$G(x, \delta) \subset G(y, \delta + ||x - y||).$$

from whence, in accordance with the definition of $\omega(x, \delta)$, we obtain inequality (23).

From (22), (23) and (21) follows immediately the following, which we shall need in the sequel:

ASSERTION 2. In any Banach space, a local module of convexity $\omega(x, \delta)$ is uniformly continuous on the set $S \times [\delta_0: 1]$ (S is the unit sphere of the space). If the space is locally uniformly convex, then $\omega(x, \delta)$ is, moreover, continuous on the set $S \times [0: 1]$ ($0 < \delta_0 < 1$).

The results of this section were obtained by the author in collaboration with V. I. Gurarie.

§3. AUXILIARY CONSTRUCTIONS

On the unit solid sphere of space X we construct the functional

$$\Phi(x) = \omega\left(\frac{x}{\|x\|}; \ 1 - \|x\|\right); \ \Phi(\theta) = 1.$$
 (24)

It follows from the results of §2 that this functional is continuous on the unit sphere $U\{\|x\| \le 1\}$ and is uniformly continuous on each sphere $U\{\|x\| \le 1 - \delta_0\}$; on the unit sphere, the functional $\Phi(x) = 0$, and inside it, the following inequality is valid

$$1-\|x\|\leqslant\Phi(x)\leqslant 1.$$

LEMMA 4. If the numbers $\{a_k\}_{1}^{\infty}$ are such that

$$\lim_{n\to\infty}\Phi(s_n)=0 \qquad \left(s_n=\sum_{1}^n a_k e_k\right), \tag{25}$$

then the series $\Sigma a_k e_k$ converges.

Proof. It follows from conditions (1) and (25) that

$$||s_1|| \le ||s_2|| \le \dots; \quad \lim_{n \to \infty} ||s_n|| = 1.$$
 (26)

we now show that, for any n, all elements s_m ($m \ge n$) lie in the set $G(s_n/\|s_n\|; 1-\|s_n\|)$. Indeed,

$$||\lambda s_n \cdot || s_n ||^{-1} + (1 - \lambda) s_m || \ge ||\lambda s_n \cdot || s_n ||^{-1} + (1 - \lambda) s_n || = ||s_n || \cdot |\lambda || s_n ||^{-1} + (1 - \lambda) || \ge ||s_n || \cdot (0 \le \lambda \le 1),$$

whence the requisite inclusion also follows. Condition (25) means that the diameter of the set $G(s_n/\|s_n\|; 1-\|s_n\|)$ tends to zero as $n\to\infty$. This means that the sequence $\{s_n\}_1^\infty$ is fundamental and, thus, the series $\Sigma a_k e_k$ converges to some normal element.

For each element $x \in U\{\|x\| \le 1\}$, we consider the broken line (generally speaking, infinitely segmented), successively linking the points θ , S_1x , S_2x , ...; we add to this the element x itself, and we denote by L(x) the closed set thus obtained (homeomorphic to a segment). We define the functional F(x), which will participate in subsequent constructions:

$$F(x) = \left(1 - \frac{1}{2} \|x\|\right) \min_{z \in L(x)} \Phi(z) \qquad (\|x\| \leqslant 1). \tag{27}$$

This functional is continuous, satisfies the inequality

$$\left(1 - \frac{1}{2} \|x\|\right) (1 - \|x\|) \leqslant F(x) \leqslant 1 ,$$

and vanishes on the unit sphere.

We shall now prove that Lemma 4 also holds for functional F(x). Let

$$\lim_{n\to\infty}F(s_n)=0\qquad \left(s_n=\sum_{k=1}^na_ke_k\right).$$

This means that, for each n, we can find $\nu = \nu$ (n) \leq n such that

$$\lim_{n\to\infty}\Phi(s_{\nu-1}+\lambda_{\nu}e_{\nu})=0 \qquad (0\leqslant |\lambda_{\nu}|\leqslant |a_{\nu}|).$$

According to (26), ν increases without bound as n increases. Repeating almost word for word the discussion of Lemma 4, we find that the expression $s_{\nu-1} + \lambda_{\nu} e_{\nu}$ tends with increasing ν to some normed element, the basis expansion of which is the series $\Sigma a_k e_k$.

ASSERTION 3. On the unit sphere of space X it is possible to define a continuous functional, F(x), possessing the following properties:

- a) F(x) > 0 for ||x|| < 1; F(x) = 0 for ||x|| = 1; $F(\theta) = 1$;
- b) if $\lim_{n\to\infty} F\left(\sum_{k=0}^{n} a_k e_k\right) = 0$, then the series $\sum a_k e_k$ converges;
- c) for fixed n and $\{a_k\}_1^{n-i}$, the function

$$\psi(\alpha) = F\left(\sum_{1}^{n-1} a_k e_k + \alpha e_n\right)$$

is strictly increasing for $\alpha < 0$ and is strictly decreasing for $\alpha > 0$.

<u>Proof.</u> F(x) defined by formula (27) is such a functional. Properties (a) and (b) are already established. Let us prove (c). Let $|\alpha_1| < |\alpha_2|$; $\alpha_2 \alpha_2 \ge 0$. Then,

$$||s_{n-1} + \alpha_1 e_n|| < ||s_{n-1} + \alpha_2 e_n|| \tag{28}$$

by virtue of the orthogonality of the basis, and

$$L(s_{n-1}+\alpha_1e_n)\subset L(s_{n-1}+\alpha_2e_n), \tag{29}$$

by definition of the set L(x). From (27)-(29) we get $\psi(\alpha_1) > \psi(\alpha_2)$.

§ 4. HOMEOMORPHISM OF SPACES WITH BASES

To each normed element $x \in X$ we put into correspondence the numerical sequence

$$h_n(x) = [F^2(S_{n-1}x) - F^2(S_nx)]^{1/2} \operatorname{sign} f_n(x) \qquad (n = 1, 2, ...).$$
(30)

<u>LEMMA 5.</u> If x is an element of the unit sphere, then $\sum_{1}^{\infty}h_{n}^{2}(x)=1$. For any real numbers $\{h_{n}\}_{1}^{\infty}$ subject to the condition that $\Sigma h_{n}^{2}=1$, we can find a unique normed element x such that

$$h_n(x) = h_n$$
 $(n = 1, 2, ...).$

<u>Proof.</u> The first part of the lemma is directly verified. We turn to its second part. We choose the coefficient a_1 such that

$$1 - F^2(a_1 e_1) = h_1^2, \quad \text{sign } a_1 = \text{sign } h_1.$$
 (31₁)

When the coefficients $\{a_k\}_1^{n-1}$ are all defined, we then define a_n from the conditions

$$F^{2}(s_{n-1}) - F^{2}(s_{n-1} + a_{n}e_{n}) = h_{n}^{2}, \quad \text{sign } a_{n} = \text{sign } h_{n}.$$
(31_n)

According to property (c) of functional F(x), each coefficient, a_k , is determined uniquely. Adding (31_n) and taking into account the condition that $\Sigma h_n^2 = 1$, we convince ourselves that $\lim_{n \to \infty} F(s_n) = 0$. This means that, by property (b), the series $\Sigma a_k e_k$ converges, and its sum is the normed element x being sought.

LEMMA 6. The normed sequence x_{ν} converges to the element x if and only if

$$\lim_{y \to \infty} h_n(x_y) = h_n(x) \qquad (n = 1, 2, \ldots). \tag{32}$$

<u>Proof.</u> If $x_{\nu} \to x$, then (32) is a consequence of the continuity of F(x). Now, let (32) hold. Considering this equation successively for n = 1, 2, ..., we convince ourselves that $\lim_{\nu \to \infty} f_n(x_{\nu}) = f_n(x)$ (n = 1, 2, ...). Since, moreover, $\|x_{\nu}\| = \|x\| = 1$ then, according to property (b), the norms of space $X, x_{\nu} \to x$.

ASSERTION 4. Space X is homeomorphic to space l_2 .

<u>Proof.</u> It follows from Lemma 5 that, by putting into correspondence with each normed element $x \in X$ the sequence of its coordinates

$$Hx = \{h_n(x)\}_{n=1}^{\infty} \quad (||x|| = 1),$$

we arrive at a one-to-one correspondence between the spheres of spaces X and l_2 . We now prove that this correspondence, H, is a homeomorphism. We note, for this, that the natural norm of space l_2 satisfies conditions a)-c) of Assertion 1, and that in l_2 one can set $F(y) = \sqrt{1 - \|y\|^2}$. We now consider the convergent sequence of normed elements of space X:

$$\lim_{v \to \infty} x_v = x; \quad ||x_v|| = ||x|| = 1. \tag{33}$$

It follows from (33) that $\lim_{\nu\to\infty} h_n(x_{\nu}) = h_n(x)$ (n = 1, 2...), whence, according to correspondence H,

$$\lim_{v \to \infty} h_n(y_v) = h_n(y) \quad (y_v = Hx_v; \ y = Hx). \tag{34}$$

According to Lemma 6, it follows from (34) that $\lim_{\nu \to \infty} y_{\nu} = y$, which proves the continuity of mapping H. Continuity of the inverse mapping, H^{-1} , is proven analogously.

Homeomorphism H is extended from spheres to the entire space by the formula

$$y = ||x|| \cdot H(x / ||x||); \ H(0) = \theta \quad (x \in X; \ y \in l_2).$$

Since equivalent changes of norms of a B-space do not affect its topology, it then follows from Assertion 4 that all infinite-dimensional B-spaces with bases are topologically equivalent.

§5. HOMEOMORPHISM OF ALL SEPARABLE INFINITE-DIMENSIONAL B-SPACES

It is now necessary to extend the result of Assertion 4 to spaces without bases (so far, their existence has been neither proven nor even verified).

Since each infinite-dimensional B-space contains an infinite-dimensional subspace with a basis, the target homeomorphism follows from the Bessaga-Pelczynski theorem formulated in our introduction.

For completeness of exposition, we shall prove the result we need here.

We introduce the product of B-spaces with a countable or finite number of factors:

$$Z = Z_1 \times Z_2 \times Z_3 \times \dots$$

This is a B-space, the elements of which are the sequences

$$z = \{z_1, z_2, z_3, \ldots\}, z_n \in Z_n, \lim_{n \to \infty} ||z_n|| = 0,$$

with the norm $\|z\| = \max_{n} \|z_n\|$, and with term-by-term addition and multiplication by a scalar. We note the following isometric (and, moreover, homeomorphic) correspondence:

$$c_0 = c_0 \times c_0 = c_0 \times c_0 \times c_0 \times \dots, \tag{35}$$

where c_0 is the B-space of all numerical sequences which converge to zero.

We now state without proof the assertion of [12], which is a simple corollary of the Bartle-Graves theorem [20].

LEMMA 7. If Z is a Banach space and Z_1 a subspace of it, then

$$Z \sim Z_1 \times Z/Z_1$$

(where the symbol ~ denotes homeomorphism).

Finally, we consider an infinite-dimensional separable B-space, X, with no additional constraints imposed. Let Y be its infinite-dimensional subspace with a basis; we denote by Z the factor-space X/Y. Since spaces c_0 and C (the spaces of functions continuous on segments) have bases, then

$$Y \sim C \sim c_0 \sim c_0 \times c_0 \sim c_0 \times c_0 \times c_0 \times \dots$$
 (36)

By using Lemma 7 and relationship (36), we obtain

$$X \sim Y \times Z \sim (c_0 \times c_0) \times Z \sim c_0 \times (c_0 \times Z) \sim c_0 \times (Y \times Z) \sim C \times X. \tag{37}$$

Since C is a universal space ([17], page 256), it contains a subspace, X₁, isometric to X. Therefore,

$$C \sim X \times W \sim c_0 \qquad (W = C / X_1). \tag{38}$$

From (36) and (38), we get

$$C \sim c_0 \times c_0 \times c_0 \times \dots \sim (X \times W) \times (X \times W) \times (X \times W) \times \dots$$

$$\sim X \times (W \times X) \times (W \times X) \times \dots \sim X \times (c_0 \times c_0 \times c_0 \times \dots) \sim X \times C.$$
 (39)

Taking both (37) and (39) into account, we arrive at the required homeomorphism:

$$X \sim C$$
.

We have thus proven that all separable infinite-dimensional Banach spaces (with bases or without them) are homeomorphic.

LITERATURE CITED

- 1. M. Fréchet, Abstract Spaces [in French], Paris (1928).
- 2. S. Mazur, A remark on homeomorphisms of functional fields [in French], Studia Math.,1, 83-85 (1929).
- 3. S. Kaczmarz, The homeomorphy of certain spaces, Bull. Acad. Polon. Sci.,145-148 (1933).

- 4. C. Banach, Course in Functional Analysis [Ukrainian translation from the French], Radyans'ka shkola, Kiev (1948).
- 5. H. Stone, Notes on integration II, Proc. Nat. Acad. Sci. USA, 34, 447-455 (1948).
- 6. M. I. Kadets, Homeomorphisms of certain Banach spaces, DAN SSSR, 122, No. 1, 13-16 (1958).
- 7. M. I. Kadets, Topological equivalence of uniformly convex spaces, UMN, 10, No. 4, 137-141 (1955).
- 8. M. I. Kadets, Weak and strong convergence, DAN SSSR, 122, No. 1, 13-16 (1958).
- 9. M. I. Kadets, Combined boundaries of weak and strong convergences, DAN USSR, No. 9, 949-952 (1959).
- 10. M. I. Kadets and B. Ya. Levin, Solution of Banach's problem of the topological equivalence of spaces of continuous functions, Tr. semin. po funckts. analizu, No. 3-4, 20-25, Voronezh (1965)
- 11. M. I. Kadets, Topological equivalence of certain cones of Banach spaces, UMN, 20, No. 3, 183-187 (1965).
- 12. V. L. Klee, Mappings into normed linear spaces, Fund. Math., 49, 286-290 (1960).
- 13. C. Bessaga, and A. Pelczynski, Some remarks on homeomorphisms of B-spaces, Bull. Acad. Polon. Sci., 8, 757-760 (1960).
- 14. K. Borsuk, Isomorphisms of function spaces [in German], Bull. Acad. Polon. Sci., pp. 1-18 (1933).
- 15. M. I. Kadets, Topological equivalence of all separable Banach spaces, DAN SSSR, 167, 23-25 (1966).
- 16. C. Bessaga, Topological equivalence of all separable Banach spaces, Fund. Math., 56, 251-288 (1965).
- 17. L. A. Lyusternik and V. I. Sobolev, Elements of Functional Analysis, sec. ed. [in Russian], Nauka, Moscow (1965).
- 18. M. I. Kadets, Isomorphic locally Uniformly convex spaces, Izv. Vuzov, ser. matem., No. 6, 51-57 (1958).
- 19. M. I. Kadets, Letter to the Editor, Izv. Vuzov, ser. matem., No. 6, 186-187 (1961).
- 20. R. G. Bartle and L. M. Graves, Letter to the Editor, Trans. Amer. Math. Soc., 72, 400-413 (1952).

All abbreviations of periodicals in the above bibliography are letter-by-letter transliterations of the abbreviations as given in the original Russian journal. Some or all of this periodical literature may well be available in English translation. A complete list of the cover-to-cover English translations appears at the back of the first issue of this year.