PROOF OF THE TOPOLOGICAL EQUIVALENCE OF ALL SEPARABLE

INFINITE-DIMENSIONAL BANACH SPACES

M. I. Kadets

In 1928, Fréchet [1] raised the question: are all separable infinite-dimensional Banach spaces homeomorphic? In 1929, S. Mazur [2] proved that all spaces L_{p} and $l_{p}(1 \leq p<\infty)$ are homeomorphic. This was historically the first example of not isomorphic, but homeomorphic, Banach spaces. In 1933, S. Kaczm marz generalized Mazur's result to Orlich space [3]. Banach [4] repeated Fréchet's question, and concentrated on certain particular cases of this problem. From 1932 until 1953, only one paper [5] related to the Fréchet-Banach problem was published.

From 1953 to 1960 , the author of the present paper published a number of notes [6-11], in which the homeomorphism of certain separable B-spaces was established. The result of [9] - the homeomorphism of all separable conjugate B-spaces - was simultaneously obtained by Klee [12]. The results of [6-9, 11 and 12] were established via two methods, which we can call: the method of equivalent norms and the method of coordinates. In 1960, Bessaga and Pelczynski [13] proved the following theorem:

If an infinite-dimensional separable B-space contains a subspace homeomorphic to l_{2}, or allows a linear continuous mapping onto a space homeomorphic to l_{2}, then X is homeomorphic to l_{2}.

The method used by Bessaga and Pelczynski is due to Borsuk [14] and may be called the method of expansion.

The present paper is devoted to the detailed proof of a theorem which supplies a positive answer to the Fréchet-Banach problem:

THEOREM. All separable infinite-dimensional Banach spaces are topologically equivalent.
For the proof of the theorem, all the methods of proof just cited will be utilized.
In shortened form, this proof was published in [15], and was presented at the International Congress of Mathematicians at Moscow.

We shall not touch here on the broader problems of topological classification of F -spaces and their subsets. The basic results and the open questions relating to these problems were included in a synoptic paper of Bessaga [16] (cf., also, the abstracts of the papers of Bessaga, Pelczynski, and Klee, and the paper of Anderson at the Congress).

§1. EQUIVALENT NORMS

Let X be a real B -space with basis $\left\{\mathrm{e}_{\mathrm{k}}\right\}_{1}^{\infty}$; we denote by $\left\{f_{\mathrm{k}}\right\}_{1}^{\infty}$ a system of linear functionals conjugate to the basis. Thus, each element $x \in X$ is represented in the form

$$
x=\sum_{k=1}^{\infty} f_{k}(x) e_{k} .
$$

We introduce the further notation:

$$
S_{n}(x)=\sum_{k=1}^{n} f_{k}(x) e_{k} ; \quad R_{n} x==\sum_{k=n+1}^{\infty} f_{k}(x) e_{k} .
$$

While denoting the original norm of space X by $\|\cdot\|_{0}$, we introduce the equivalent norm:

$$
\|x\|_{1}=\sup _{m, n}\left\|\sum_{m+1}^{n} f_{k}(x) e_{k}\right\|_{0}
$$

As is easily verified, the norm $\|\cdot\|_{1}$ possesses the following monotonicity property: for all $m, n(1 \leq m<n \leq \infty)$ and for all coefficients λ_{k},

$$
\begin{equation*}
\left\|\sum_{m+1}^{n} \lambda_{k} e_{k}\right\|_{1} \leqslant\left\|\sum_{m}^{n+1} \lambda_{k} e_{k}\right\| \tag{1}
\end{equation*}
$$

We introduce the following equivalent norm by:

$$
\begin{equation*}
\|x\|_{2}=\sum_{n=0}^{\infty} 2^{-n}\left\|R_{n} x\right\|_{1} \tag{2}
\end{equation*}
$$

This norm retains property (1). We now prove that, in addition, it satisfies the conditions: if for some x_{ν} and x

$$
\begin{equation*}
\lim _{v \rightarrow \infty} f_{n}\left(x_{v}\right)=f_{n}(x) \quad(n=1,2, \ldots) \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left\|x_{v}\right\|_{2} \geqslant\|x\|_{2} \tag{4}
\end{equation*}
$$

and if, in addition to (3), there holds the following condition

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left\|x_{v}\right\|_{2}=\|x\|_{2} \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left\|x_{v}-x\right\|_{2}=0 \tag{6}
\end{equation*}
$$

In other words, the unit solid sphere $U\left\{\|x\|_{2} \leq 1\right\}$ is closed with respect to coordinatewise convergence, while on the unit spherical surfaces $S\left\{\|x\|_{2}=1\right\}$, coordinatewise convergence coincides with strong convergence.

LEMMA 1. It follows from conditions (3) that

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left\|R_{n} x_{v}\right\|_{1} \geqslant\left\|R_{n} x\right\|_{1} \quad(n=0,1,2, \ldots) \tag{7}
\end{equation*}
$$

Proof. We fix n, and take some arbitrary $\varepsilon>0$. We choose m so large that

$$
\begin{equation*}
\left\|R_{n} x-S_{m} R_{n} x\right\|_{1}<\frac{\varepsilon}{2} \tag{8}
\end{equation*}
$$

Further, we choose ν_{0} such that, for all $\nu \geqq \nu_{0}$,

$$
\begin{equation*}
\left\|S_{m} R_{n} x_{v}-S_{m} R_{n} x\right\|_{1}<\frac{\varepsilon}{2} \tag{9}
\end{equation*}
$$

We thus find from (8) and (9) that

$$
\left\|R_{n} x-S_{m} R_{n} x_{v}\right\|_{1}<\varepsilon
$$

which means

$$
\left\|R_{n} x\right\|_{1}-\varepsilon<\left\|S_{m} R_{n} x_{v}\right\|_{1} \leqslant\left\|R_{n} x_{v}\right\|_{v}
$$

and this proves the lemma.
Property (4) follows from (2) and (7). Confronting (2), (5) and (7), we see that conditions (3) and (5) entail the following system of equations:

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left\|R_{n} x_{v}\right\|_{1}=\left\|R_{n} x\right\|_{1} \quad(n=0,1,2, \ldots) \tag{10}
\end{equation*}
$$

LEMMA 2. The set $\left\{x_{\nu}\right\}$, subject to condition (10), is compact.
Proof. Assigning some $\varepsilon>0$, we define n_{0}, and then ν_{0}, such that

$$
\left\|R_{n_{0}} x\right\|_{1}<\frac{\varepsilon}{2} ;\left\|R_{n_{0}} x_{v}-R_{n_{0}} x\right\|<\frac{\varepsilon}{2} \quad\left(v \geqslant v_{0}\right)
$$

whence

$$
\left\|R_{n_{0}} x_{v}\right\|_{1}<\varepsilon \quad\left(v \geqslant v_{0}\right) .
$$

We replace n_{0} by a larger subscript, n_{1}, such that the last inequality is extended to $\nu<\nu_{0}$. In accordance with the monotonocity condition (1) for the basis, we obtain

$$
\left\|R_{n} x_{v}\right\|_{1}<\varepsilon\left(v=1,2, \ldots ; n \geqslant n_{1}(\varepsilon)\right)
$$

i.e., the norm of the remainder of the basis expansion tends to zero as $n \rightarrow \infty$, uniformly in ν. The proof is completed by citing the criterion for compactness in B-spaces with bases [17, page 247].

Compactness of the sequence $\left\{x_{\nu}\right\}$, in conjuction with coordinatewise convergence, entails strong convergence. Thus, the properties of norm $\|\cdot\|_{2}$ are verified. This norm was introduced in [18].

Finally, we construct the equivalent norm $\|\cdot\|$ which will occur in what follows:

$$
\begin{equation*}
\|x\|=\sqrt{\|x\|_{2}^{2}+J^{2}(x)} ; \quad J(x)=\sqrt{\sum_{1}^{\infty} 2^{-k}\left(\frac{f_{k}(x)}{\left\|f_{k}\right\|_{2}}\right)^{2}} . \tag{11}
\end{equation*}
$$

It is obvious that this norm also has property (1). We now verify that, for it, (6) again follows from (3) and (5). Indeed, let (3) hold and

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left\|x_{v}\right\|=\|x\| \tag{5a}
\end{equation*}
$$

It follows from the definition of $J(x)$ that

$$
\begin{equation*}
\lim _{v \rightarrow \infty} J\left(x_{v}\right) \geqslant J(x) . \tag{12}
\end{equation*}
$$

Since, in addition, (4) follows from (3) then, confronting (4), (12), (11) and (5a), we see that

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left\|x_{v}\right\|_{2}=\|x\|_{2} \tag{5}
\end{equation*}
$$

and this means that, from the properties of norm $\|\cdot\|_{2},(6)$ holds. Since the norms $\|\cdot\|$ and $\|\cdot\|_{2}$ are equivalent,

$$
\lim _{v \rightarrow \infty}\left\|x_{v}-x\right\|=0
$$

Definition. A Banach space is called locally uniformly convex if, from the conditions

$$
\begin{equation*}
\left\|x_{v}\right\|=\|x\|=1, \quad \lim _{v \rightarrow \infty}\left\|x_{v}+x\right\|=2 \tag{13}
\end{equation*}
$$

it follows that

$$
\lim _{v \rightarrow \infty}\left\|x_{v}-x\right\|=0
$$

We now prove that space X is locally uniformly convex with respect to the norm of (11). In accordance with (11), we rewrite conditions (13) in the form

$$
\begin{array}{r}
\left\|x_{v}\right\|_{2}^{2}+J^{2}\left(x_{v}\right)=\|x\|_{2}^{2}+J^{2}(x)=1 \\
\lim _{v \rightarrow \infty}\left[\left\|x_{v}+x\right\|_{2}^{2}+J^{2}\left(x_{v}+x\right)\right]=4 . \tag{15}
\end{array}
$$

We add the two evident relationships:

$$
\begin{gathered}
J^{2}\left(x_{v}-x\right)+J^{2}\left(x_{v}+x\right)=2\left[J^{2}\left(x_{v}\right)+J^{2}(x)\right], \\
\left\|x_{v}+x\right\|_{2}^{2} \leqslant 2\left[\|x\|_{2}^{2}+\left\|x_{v}\right\|_{2}^{2}\right]
\end{gathered}
$$

and obtain

$$
\begin{equation*}
J^{2}\left(x_{v}-x\right)+\left[\left\|x_{v}+x\right\|_{2}^{2}+J^{2}\left(x_{v}+x\right)\right] \leqslant 2\left[\left\|x_{v}\right\|_{2}^{2}+J^{2}\left(x_{v}\right)\right]+2\left[\|x\|_{2}^{2}+J^{2}(x)\right] . \tag{16}
\end{equation*}
$$

Confronting (14), (15) and (16), we obtain

$$
\begin{equation*}
\lim _{v \rightarrow \infty} J\left(x_{v}-x\right)=0 . \tag{17}
\end{equation*}
$$

It follows from (17) that

$$
\begin{equation*}
\lim _{v \rightarrow \infty} J\left(x_{v}\right)=J(x) ; \lim _{v \rightarrow \infty} f_{n}\left(x_{v}\right)=f_{n}(x) \quad(n=1,2, \ldots) \tag{18}
\end{equation*}
$$

By scrutinizing (14) and the first of conditions (18), we see that

$$
\begin{equation*}
\lim _{v \rightarrow \infty}\left\|x_{v}\right\|=\|x\|_{2} . \tag{5}
\end{equation*}
$$

For $\|\cdot\|_{2}$, from coordinatewise convergence and convergence of the norm follow strong convergence, which also proves the locally uniform convexity of space ($\mathrm{X},\|\cdot\|$). The norm of (11) was considered in [19]. Proof of the equivalence of all the norms considered here presents no difficulty.

Summarizing all we have proven in this section, we have
ASSERTION 1. In a Banach space with basis $\left\{\mathrm{e}_{\mathrm{k}}\right\}_{1}^{\infty}$, there exists an equivalent norm, $\|\cdot\|$, possessing the following properties:
a) the basis with respect to this norm is orthogonal:

$$
\left\|\sum_{k=1}^{n-1} a_{k} e_{k}\right\|<\left\|\sum_{k=1}^{n} a_{k} e_{k}\right\| \quad\left(a_{n} \neq 0 ; n=1,2, \ldots\right)
$$

b) on the unit spherical surface, coordinatewise convergence coincides with convergence in norm;
c) the space is locally uniformly convex.

§2. LOCAL MODULES OF CONVEXITY

Consider the functional

$$
\begin{equation*}
\omega(x, \delta)=\frac{1}{2} \sup _{z \in G(x, \delta)}\|x-z\| \quad(\|x\|=1 ; 0 \leqslant \delta \leqslant 1) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
G(x, \delta)=\left\{z: \quad\|z\| \leqslant 1 ; \quad \min _{0 \leqslant \lambda \leqslant 1}\|\lambda x+(1-\lambda) z\| \geqslant 1-\delta\right\} \tag{20}
\end{equation*}
$$

For all δ, the local module of convexity, $\omega(x, \delta)$, satisfies the inequalities

$$
\delta \leqslant \omega(x, \delta) \leqslant \omega\left(x, \delta_{1}\right) \leqslant \omega(x, 1)=1 \quad\left(\delta \leqslant \delta_{1} \leqslant 1\right)
$$

If the space is locally uniformly convex, then

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \omega(x, \delta)=0 \tag{21}
\end{equation*}
$$

LEMMA 3. A local module of convexity satisfies the conditions

$$
\begin{array}{cl}
\omega(x, \delta+h)-\omega(x, \delta) \leqslant \frac{2 h}{\delta^{2}} & (0<\delta \leqslant \delta+h \leqslant 1), \\
\omega(x, \delta) \leqslant \frac{1}{2}\|x-y\|+\omega(y, \delta+\|x-y\|) & (0<\delta<\delta+\|x-y\| \leqslant 1) . \tag{23}
\end{array}
$$

Proof. In accordance with the definition of a local module of convexity, it suffices to verify ineguality (22) for an arbitrary two-dimensional section of the unit sphere containing the center of the sphere and the point x. Reduction to a two-dimensional space allows us to have recourse to illustrations. Figure 1 represents concentric spheres of radii 1 and $1-\delta$. The set $G(x, \delta)$ is cross-hatched. The distance from the line $x z_{1}$ to the center, θ, equals $1-\delta-h$. It is necessary to find an upper bound for the difference $\left\|x-z_{1}\right\|-$ $\|x-z\|$. We introduce the coordinate system: the $\theta \xi$ axis passes through point v of the tangent chord $x z$ and the inner circle; the $\theta \eta$ axis is parallel to chord $x z$. We give now the coordinates of the points we shall need:

$$
\begin{gathered}
x\left(1-\delta, \omega^{+}\right) ; y\left(1-\delta,-\omega^{-}\right) ; \\
u\left(1-\delta_{1}, 0\right) ; v(1-i, 0) ; \omega(1,0),
\end{gathered}
$$

where ω^{+}and ω^{-}are the lengths of segments $x v$ and $v z$ such that

$$
\delta \leqslant \omega^{ \pm} \leqslant 1 ; \delta \leqslant \delta_{1} \leqslant \delta+h ; \quad \omega^{+}+\omega^{-}=2 \omega .
$$

Figure 2 shows the unit sphere which is "worst" for the given $\omega^{ \pm}$and $\delta:$ on $i t,\left\|x-z_{1}\right\|$ attains the greatest of its possible values. Using the ordinary tools of affine analytic geometry (we omit the corresponding horrendous computations), we can obtain

Fig. 1

$$
\left\|x-z_{1}\right\|=2 \min \left\{1 ; \omega \cdot \frac{\delta}{1-\delta} \cdot \frac{(1-\delta-h) \omega^{+}+h}{\delta \omega^{+}-h \omega^{-}}\right\}
$$

whence, after a number of transformations designed to eliminate the quantities ω^{+}and ω^{-}and to simplify the resulting expressions, we arrive at inequality (22).

It is more convenient to establish ineguality (23) analytically. Let x and y be close points on the unit sphere $(\|x-y\|<1-\delta)$. From the inequality

$$
\|\lambda y+(1-\lambda) z\| \geqslant\|\lambda x+(1-\lambda) z\|-\lambda\|x-y\| \geqslant 1-(\delta+\|x-y\|)(0 \leqslant \lambda \leqslant 1)
$$

Fig. 2
follows the set inclusion

$$
G(x, \delta) \subset G(y, \delta+\|x-y\|)
$$

from whence, in accordance with the definition of $\omega(x, \delta)$, we obtain inequality (23).
From (22), (23) and (21) follows immediately the following, which we shall need in the sequel:

ASSERTION 2. In any Banach space, a local module of convexity $\omega(x, \delta)$ is uniformly continuous on the set $S \times\left[\delta_{0}: 1\right]$ (S is the unit sphere of the space). If the space is locally uniformly convex, then $\omega(x, \delta)$ is, moreover, continuous on the set $S \times[0 ; 1]\left(0<\delta_{0}<1\right)$.
The results of this section were obtained by the author in collaboration with V. I. Gurarie.

§3. AUXILIARY CONSTRUCTIONS

On the unit solid sphere of space X we construct the functional

$$
\begin{equation*}
\Phi(x)=\omega\left(\frac{x}{\|x\|} ; 1-\|x\|\right) ; \Phi(\theta)=1 . \tag{24}
\end{equation*}
$$

It follows from the results of $\S 2$ that this functional is continuous on the unit sphere $U\{\|x\| \leq 1\}$ and is uniformly continuous on each sphere $U\left\{\|x\| \leq 1-\delta_{0}\right\}$; on the unit sphere, the functional $\Phi(x)=0$, and inside it, the following inequality is valid

$$
1-\|x\| \leqslant \Phi(x) \leqslant 1
$$

LEMMA 4. If the numbers $\left\{a_{\mathrm{k}}\right\}_{1}^{\infty}$ are such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Phi\left(s_{n}\right)=0 \quad\left(s_{n}=\sum_{1}^{n} a_{k} e_{k}\right) \tag{25}
\end{equation*}
$$

then the series $\Sigma a_{k} e_{k}$ converges.
Proof. It follows from conditions (1) and (25) that

$$
\begin{equation*}
\left\|s_{1}\right\| \leqslant\left\|s_{2}\right\| \leqslant \ldots ; \quad \lim _{n \rightarrow \infty}\left\|s_{n}\right\|=1 \tag{26}
\end{equation*}
$$

we now show that, for any n, all elements $s_{m}(m \geq n)$ lie in the set $G\left(s_{n} /\left\|s_{n}\right\| ; 1-\left\|s_{n}\right\|\right)$. Indeed,

$$
\left\|\lambda s_{n} \cdot\right\| s_{n}\left\|^{-1}+(1-\lambda) s_{m}\right\| \geqslant\left\|\lambda s_{n} \cdot\right\| s_{n}\left\|^{-1}+(1-\lambda) s_{n}\right\|=\left\|s_{n}\right\| \cdot\left[\lambda\left\|s_{n}\right\|^{-1}+(1-\lambda)\right] \geqslant\left\|s_{n}\right\| \quad(0 \leqslant \lambda \leqslant 1)
$$

whence the requisite inclusion also follows. Condition (25) means that the diameter of the set $G\left(s_{n} /\left\|s_{n}\right\|\right.$; $\left.1-\left\|s_{n}\right\|\right)$ tends to zero as $n \rightarrow \infty$. This means that the sequence $\left\{s_{n}\right\}_{1}^{\infty}$ is fundamental and, thus, the series $\Sigma a_{\mathrm{k}} \mathrm{e}_{\mathrm{k}}$ converges to some normal element.

For each element $x \in U\{\|x\| \leq 1\}$, we consider the broken line (generally speaking, infinitely segmented), successively linking the points $\theta, S_{1} x, S_{2} x, \ldots$; we add to this the element x itself, and we denote by $L(x)$ the closed set thus obtained (homeomorphic to a segment). We define the functional $F(x)$, which will participate in subsequent constructions:

$$
\begin{equation*}
F(x)=\left(1-\frac{1}{2}\|x\|\right) \min _{z \in L(x)} \Phi(z) \quad(\|x\| \leqslant 1) \tag{27}
\end{equation*}
$$

This functional is continuous, satisfies the inequality

$$
\left(1-\frac{1}{2}\|x\|\right)(1-\|x\|) \leqslant F(x) \leqslant 1,
$$

and vanishes on the unit sphere.
We shall now prove that Lemma 4 also holds for functional $F(x)$. Let

$$
\lim _{n \rightarrow \infty} F\left(s_{n}\right)=0 \quad\left(s_{n}=\sum_{1}^{n} a_{k} e_{k}\right)
$$

This means that, for each n , we can find $\nu=\nu(\mathrm{n}) \leq \mathrm{n}$ such that

$$
\lim _{n \rightarrow \infty} \Phi\left(s_{v-1}+\lambda_{v} e_{v}\right)=0 \quad\left(0 \leqslant\left|\lambda_{v}\right| \leqslant\left|a_{v}\right|\right)
$$

According to (26), ν increases without bound as n increases. Repeating almost word for word the discussion of Lemma 4, we find that the expression $s_{\nu-1}+\lambda_{\nu} e_{\nu}$ tends with increasing ν to some normed element, the basis expansion of which is the series $\Sigma a_{\mathrm{k}} \mathrm{e}_{\mathrm{k}}$.

ASSERTION 3. On the unit sphere of space X it is possible to define a continuous functional, $F(x)$, possessing the following properties:
a) $\mathrm{F}(\mathrm{x})>0$ for $\|\mathrm{x}\|<1 ; \mathrm{F}(\mathrm{x})=0$ for $\|\mathrm{x}\|=1 ; \mathrm{F}(\theta)=1$;
b) if $\lim _{n \rightarrow \infty} F\left(\sum_{1}^{n} a_{k} e_{k}\right)=0$, then the series $\Sigma a_{\mathbf{k}} \mathbf{e}_{\mathbf{k}}$ converges;
c) for fixed n and $\left\{a_{k}\right\}_{1}^{n-i}$, the function

$$
\psi(\alpha)=F\left(\sum_{1}^{n-1} a_{k} e_{k}+\alpha e_{n}\right)
$$

is strictly increasing for $\alpha<0$ and is strictly decreasing for $\alpha>0$.
Proof. $F(x)$ defined by formula (27) is such a functional. Properties (a) and (b) are already established. Let us prove (c). Let $\left|\alpha_{1}\right|<\left|\alpha_{2}\right| ; \alpha_{2} \alpha_{2} \geq 0$. Then,

$$
\begin{equation*}
\left\|s_{n-1}+\alpha_{1} e_{n}\right\|<\left\|s_{n-1}+\alpha_{2} e_{n}\right\| \tag{28}
\end{equation*}
$$

by virtue of the orthogonality of the basis, and

$$
\begin{equation*}
L\left(s_{n-1}+\alpha_{1} e_{n}\right) \subset L\left(s_{n-1}+\alpha_{2} e_{n}\right) \tag{29}
\end{equation*}
$$

by definition of the set $\mathbf{L}(\mathbf{x})$. From (27)-(29) we get $\psi\left(\alpha_{1}\right)>\psi\left(\alpha_{2}\right)$.

§4. HOMEOMORPHISM OF SPACES WITH BASES

To each normed element $x \in X$ we put into correspondence the numerical sequence

$$
\begin{equation*}
h_{n}(x)=\left[F^{2}\left(S_{n-1} x\right)-F^{2}\left(S_{n} x\right)\right]^{1 / 2} \operatorname{sign} f_{n}(x) \quad(n=1,2, \ldots) \tag{30}
\end{equation*}
$$

LEMMA 5. If x is an element of the unit sphere, then $\sum_{1}^{\infty} h_{n}^{2}(x)=1$. For any real numbers $\left\{\mathrm{h}_{\mathrm{n}}\right\}_{1}^{\infty}$ subject to the condition that $\Sigma h_{n}^{2}=1$, we can find a unique normed element x such that

$$
h_{n}(x)=h_{n} \quad(n=1,2, \ldots)
$$

Proof. The first part of the lemma is directly verified. We turn to its second part. We choose the coefficient a_{1} such that

$$
\begin{equation*}
1-F^{2}\left(a_{1} e_{1}\right)=h_{1}^{2}, \quad \operatorname{sign} a_{1}=\operatorname{sign} h_{1} . \tag{1}
\end{equation*}
$$

When the coefficients $\left\{a_{\mathrm{k}}\right\}_{1}^{\mathrm{n}-1}$ are all defined, we then define a_{n} from the conditions

$$
\begin{equation*}
F^{2}\left(s_{n-1}\right)-F^{2}\left(s_{n-1}+a_{n} e_{n}\right)=h_{n}^{2}, \quad \operatorname{sign} a_{n}=\operatorname{sign} h_{n} . \tag{n}
\end{equation*}
$$

According to property (c) of functional $F(x)$, each coefficient, a_{k}, is determined uniquely. Adding (31_{n}) and taking into account the condition that $\Sigma h_{n}^{2}=1$, we convince ourselves that $\lim _{n \rightarrow \infty} F\left(s_{n}\right)=0$. This means that, by property (b), the series $\Sigma a_{\mathrm{k}} \mathrm{e}_{\mathrm{k}}$ converges, and its sum is the normed element x being sought.

LEMMA 6. The normed sequence x_{ν} converges to the element x if and only if

$$
\begin{equation*}
\lim _{v \rightarrow \infty} h_{n}\left(x_{v}\right)=h_{n}(x) \quad(n=1,2, \ldots) \tag{32}
\end{equation*}
$$

Proof. If $x_{\nu} \rightarrow x$, then (32) is a consequence of the continuity of $F(x)$. Now, let (32) hold. Considering this equation successively for $n=1,2, \ldots$, we convince ourselves that $\lim _{\nu \rightarrow \infty} f_{n}\left(x_{\nu}\right)=f_{n}(x)(n=1,2, \ldots)$. Since, moreover, $\left\|x_{\nu}\right\|=\|x\|=1$ then, according to property (b), the norms of space $X, x_{\nu} \rightarrow x$.

ASSERTION 4. Space X is homeomorphic to space \boldsymbol{l}_{2}.
Proof. It follows from Lemma 5 that, by putting into correspondence with each normed element $x \in X$ the sequence of its coordinates

$$
H x=\left\{h_{n}(x)\right\}_{n=1}^{\infty} \quad(\|x\|=1)
$$

we arrive at a one-to-one correspondence between the spheres of spaces X and l_{2}. We now prove that this correspondence, H, is a homeomorphism. We note, for this, that the natural norm of space l_{2} satisfies conditions a)-c) of Assertion 1, and that in l_{2} one can set $F(y)=\sqrt{1-\|y\|^{2}}$. We now consider the convergent sequence of normed elements of space X :

$$
\begin{equation*}
\lim _{v \rightarrow \infty} x_{v}=x ; \quad\left\|x_{v}\right\|=\|x\|=1 \tag{33}
\end{equation*}
$$

It follows from (33) that $\lim _{\nu \rightarrow \infty} h_{n}\left(x_{\nu}\right)=h_{n}(x)(n=1,2 \ldots)$, whence, according to correspondence H,

$$
\begin{equation*}
\lim _{v \rightarrow \infty} h_{n}\left(y_{v}\right)=h_{n}(y) \quad\left(y_{v}=H x_{v} ; y=H x\right) . \tag{34}
\end{equation*}
$$

According to Lemma 6 , it follows from (34) that $\lim _{\nu \rightarrow \infty} \mathrm{y}_{\nu}=\mathrm{y}$, which proves the continuity of mapping H . Continuity of the inverse mapping, H^{-1}, is proven analogously.

Homeomorphism H is extended from spheres to the entire space by the formula

$$
y=\|x\| \cdot H(x /\|x\|) ; H(\theta)=\theta \quad\left(x \in X ; y \in l_{2}\right) .
$$

Since equivalent changes of norms of a B-space do not affect its topology, it then follows from Assertion 4 that all infinite-dimensional B-spaces with bases are topologically equivalent.

§5. HOMEOMORPHISMOFALLSEPARABLE INFINITE-DIMENSIONALB-SPACES

It is now necessary to extend the result of Assertion 4 to spaces without bases (so far, their existence has been neither proven nor even verified).

Since each infinite-dimensional B-space contains an infinite-dimensional subspace with a basis, the target homeomorphism follows from the Bessaga-Pelczynski theorem formulated in our introduction.

For completeness of exposition, we shall prove the result we need here.
We introduce the product of B-spaces with a countable or finite number of factors:

$$
Z=Z_{1} \times Z_{2} \times Z_{3} \times \ldots
$$

This is a B-space, the elements of which are the sequences

$$
z=\left\{z_{1}, z_{2}, z_{3}, \ldots\right\}, \quad z_{n} \in Z_{n}, \quad \lim _{n \rightarrow \infty}\left\|z_{n}\right\|=0
$$

with the norm $\|z\|=\max _{\mathrm{n}}\left\|z_{\mathrm{n}}\right\|$, and with term-by-term addition and multiplication by a scalar. We note the following isometric (and, moreover, homeomorphic) correspondence:

$$
\begin{equation*}
c_{0}=c_{0} \times c_{0}=c_{0} \times c_{0} \times c_{0} \times \ldots \tag{35}
\end{equation*}
$$

where c_{0} is the B-space of all numerical sequences which converge to zero.
We now state without proof the assertion of [12], which is a simple corollary of the Bartle-Graves theorem [20].

LEMMA 7. If Z is a Banach space and Z_{1} a subspace of $i t$, then

$$
Z \sim Z_{1} \times Z / Z_{1}
$$

(where the symbol \sim denotes homeomorphism).
Finally, we consider an infinite-dimensional separable B-space, X, with no additional constraints imposed. Let Y be its infinite-dimensional subspace with a basis; we denote by Z the factor-space X / Y. Since spaces c_{0} and C (the spaces of functions continuous on segments) have bases, then

$$
\begin{equation*}
Y \sim C \sim c_{0} \sim c_{0} \times c_{0} \sim c_{\mathrm{u}} \times c_{\mathrm{b}} \times c_{0} \times \ldots \tag{36}
\end{equation*}
$$

By using Lemma 7 and relationship (36), we obtain

$$
\begin{equation*}
X \sim Y \times Z \sim\left(c_{0} \times c_{0}\right) \times Z \sim c_{0} \times\left(c_{0} \times Z\right) \sim c_{0} \times(Y \times Z) \sim C \times X \tag{37}
\end{equation*}
$$

Since C is a universal space ([17], page 256), it contains a subspace, X_{1}, isometric to X. Therefore,

$$
\begin{equation*}
C \sim X \times W \sim c_{0} \quad\left(W=C / X_{1}\right) \tag{38}
\end{equation*}
$$

From (36) and (38), we get

$$
\begin{align*}
& C \sim c_{0} \times c_{0} \times c_{0} \times \ldots \sim(X \times W) \times(X \times W) \times(X \times W) \times \ldots \\
& \sim X \times(W \times X) \times(W \times X) \times \ldots \sim X \times\left(c_{0} \times c_{0} \times c_{0} \times \ldots\right) \sim X \times C . \tag{39}
\end{align*}
$$

Taking both (37) and (39) into account, we arrive at the required homeomorphism:

$$
X \sim C
$$

We have thus proven that all separable infinite-dimensional Banach spaces (with bases or without them) are homeomorphic.

LITERATURE CITED

1. M. Fréchet, Abstract Spaces [in French], Paris (1928).
2. S. Mazur, A remark on homeomorphisms of functional fields [in French], Studia Math., 1 , 83-85 (1929).
3. S. Kaczmarz, The homeomorphy of certain spaces, Bull. Acad. Polon. Sci.,145-148 (1933).
4. C. Banach, Course in Functional Analysis [Ukrainian translation from the French], Radyans'ka shkola, Kiev (1948).
5. H. Stone, Notes on integration.II, Proc. Nat. Acad. Sci. USA, 34, 447-455 (1948).
6. M. I. Kadets, Homeomorphisms of certain Banach spaces, DAN SSSR, 122, No. 1, 13-16 (1958).
7. M. I. Kadets, Topological equivalence of uniformly convex spaces, UMN, 10, No. 4, 137-141 (1955).
8. M. I. Kadets, Weak and strong convergence, DAN SSSR, 122, No. 1, 13-16 (1958).
9. M. I. Kadets, Combined boundaries of weak and strong convergences, DAN USSR, No. 9, 949-952 (1959).
10. M. I. Kadets and B. Ya. Levin, Solution of Banach's problem of the topological equivalence of spaces of continuous functions, Tr. semin. po funckts. analizu, No. 3-4, 20-25, Voronezh (1965)
11. M. I. Kadets, Topological equivalence of certain cones of Banach spaces, UMN, 20, No. 3, 183-187 (1965).
12. V. L. Klee, Mappings into normed linear spaces, Fund. Math., 49, 286-290 (1960).
13. C. Bessaga, and A. Pelczynski, Some remarks on homeomorphisms of B-spaces, Bull. Acad. Polon. Sci., 8, 757-760 (1960).
14. K. Borsuk, Isomorphisms of function spaces [in German], Bull. Acad. Polon. Sci., pp. 1-18 (1933).
15. M. I. Kadets, Topological equivalence of all separable Banach spaces, DAN SSSR, 167, 23-25 (1966).
16. C. Bessaga, Topological equivalence of all separable Banach spaces, Fund. Math., $56,251-288$ (1965).
17. L. A. Lyusternik and V. I. Sobolev, Elements of Functional Analysis, sec. ed. [in Russian], Nauka, Moscow (1965).
18. M. I. Kadets, Isomorphic locally Uniformly convex spaces, Izv. Vuzov, ser. matem., No. 6, 51-57 (1958).
19. M. I. Kadets, Letter to the Editor, Izv. Vuzov, ser. matem., No. 6, 186-187 (1961).
20. R. G. Bartle and L. M. Graves, Letter to the Editor, Trans. Amer. Math. Soc., 72, 400-413 (1952).
[^0]
[^0]: All abbreviations of periodicals in the above bibliography are letter-by-letter transliterations of the abbreviations as given in the original Russian journal. Some or all of this periodical literature may well be avallable in English translation. A complete list of the cover-tocover English translations appears at the back of the first issue of this year.

