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The subspace T of the conjugate space X* ofthe Banach space X is called norming, if its Dicksme char-
acteristic

r{T) = inf {{supu'f—f(ll— fe I‘} re X}

is strictly greater than zero, This characteristic of the subspace [ may also be calculated by the following
formula [1]:

T(F)=iﬂf{%tl:xEX, Fer+ - 1

J j£r) 7
where Py is a projector from n(X)® Tt onto w(X}, parallel to DL, the annihilator of [ in the space X** (7 is the
natural embedding of X in X**), For subsets U« X, Ve X* | we define the characteristic of V relative to U:

: [ jolw)] | .
r(V,V):mf{sup{lm.velf}.uebf}.

In the case when U and V are subspaces of X and X*, respectively, then r(V, U) = IPi~!, where P is a projector
from U@V, onto U, parallel to V, the annihilator of V in the space X [2].

As van Dulst and Singer showed {3], if I is a separable subspace of X*, then on X there exists an equiva-
lent norm such that in this norm the characteristic of each subspace not containing I' is strictly less than one,
We will show that there exists an equivalent norm on X with this property for nonseparabie subspace T'< X*,

We recall that the system of elements {z}.; of the Banach space X is called minimal, if there exists a
system of linear functionals {z{};c; = X* (called the conjugate of the original system), such that x} ) = 84,
A minimal system together with its conjugate, [z, zi*};5; , is called a biorthogonal system. A biorthogonal sys-
tem is called bounded, if sup|z:i|- |zi < oo.

THEOREM 1. Let {z;,])ic; be a bounded biorthogonal system in the Banach space X, and let [ = [X;]
Then on X there exists an equivalent norm such that in the new norm, for any subspace G <X* not containing
T, G, {z}ier) < 1.

Proof. We shall assume that lzf,=1 (i=I) and sup|z],<C < oo, where | - | is the original norm on
X. We introduce a system of projectors, connected with the system {z;, } }ics :

Pi(z) =z (z) 21, Qi (2) =z — Pi(2) (z=X).

Clearly, Pl = P} lp = lix; - iix] I = C. OnX we introduce a new norm | - §, setting for each z=X
o= max {z2lek, supl Pi ().
Clearly, the norm il - |l is equivalent to the original norm:
rralzb<lzl<Clz)

LEMMA 1. For any is[ja|=|z]=P;|=]P}]|=1.

Proof, Since Ixjlly =1, then | il = max{c/(c +1), 1} =1, We now calculate lef“:
* ,( [z 2t v)]
z; HQSUP e " ix =4y, Py (y)*o}—sup{-‘”“mﬂ— Pi(y)=0i=
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= sup {%ﬂ Pi(y) = 0} = sup {HTl%_—y—n— Pi(y) = 0}.

But if Pj(y) = 0, then llx; +y ! = I Pj(xj + y)ll = Ixjlly = 1. Thus lx; Il < 1. On the other hand, Ix}ll = !(x!;, xip/
fx;lt = 1. Thus lxjfl = ix]# = 1 and hence Il P Il = I P} = lixj li- le’ikll =1,
LEMMA 2, If for some i=I and zeX P{z) =g and IQ;&) !l =1/(C + 1), then lixli = 1.

Proof, Since Pjx) = X theelement x may be written in the form x =x; + Qj(x). Then
4
i) = max {215+ Q1 (@) o supIPs (23) + Py~ Qs (@) o} < max (55 (14 1Q: (@)lo), [Ps (2) o sUP P04 (2) b}
i

<mex(z55 (1+ 510 @1 1, 010 @) = max (755 H10: @1 1, €+ DI <L

On the other hand, x|l = IPj&) I, = ix;l, = 1.
LEMMA 3, For any i€l and each z*eX

12! @)+ sl @f @l <let).

Proof. Fix ie1TI; it is sufficient to establish the required inequality only for those 2*e X* f{or which
[x*(xj)! > 0. Using Lemmas 1 and 2, we obtain ||x*]!=sup{](z*,x)]:!}x|\<1}>sup{|(z*,z)i:Pi (@)= =, Qi (2) | < 1/(C +
1} =[(2* 2|+ sup{ ] (2%, Qi(@)]:]1Q: @IS 1/ €+ D) =|PT @) |+ sup ([ Q3 (=%, 2)|:lel<12(C+ D)= | P] (e%) | +

el @)

LEMMA 4. In the norm |l - {l, each element xf is a strictly exposed point of the unit sphere of the space X7,
i.e., if
{fn}:r;l cX* [fal=1 (n=1,2...), limfy(z:)=1, (*)
n—»>o

then lim |Jf, — zi [=0.

Proof. Let the sequence {fn}::l satisfy condition (). Then, applying Lemma 3, we obtain
Viw— 2 | <IPE (7) — 2T |+ 1 0F )| =1 (@) & — 2]
108 G <V n () — 1] A |+ 2+ D (b= 1PF G D = 1fn @) — 11 2(C = D (L= | fa (2 [) >0

asn— o,

We return to the proof of the theorem. Let G be a subspace of X*suchthat r(G, {zJie/) =1. For arbitrary
i=I, there exists a sequence {fo}oe, =G, |fn| =1, suchthat lim f,(z;) =|zsl=1. By Lemma 4 lim|f, —z|= 0,
=0 7-—>00

i.e., ;i = G . Thus the space G contains all the elements x}" (ieI) , and hence contains the subspace I generated
by them.

From this theorem, we immediately obtain:

COROLLARY 1. Let {z; 2 lier be a bounded biorthogonal system in the Banach space X, and let I" =
[x’ik]. Then on X there exists an equivalent norm such that in this new norm, for any subspace G <=X* not con-
taining I, r(G) < 1.

COROLLARY 2. Let |z, zi }ier be a bounded biorthogonal spanning system in the Banach space X (i.e.,
[xf] = X*). Then on X there exists an equivalent norm such that in this new norm, r(G) < 1 for each subspace
Gc X*,

Let X = ¢y(S); then X* = [;(S) and X** = m(S). Denote by 7, the natural imbedding of X in X**, and by m
the natural imbedding of X* in X***,

COROLLARY 3. Let Y = m(S) and G be a subspace of Y* such that r(G, my(cy (S) =1. Then G contains
(L1 (8)).

In fact, if {r.}.cs is a natural basis of the space ¢,(S), then the conjugate system !z les is a natural
» N a*
basis of the space 4 (S). Thus {m(z,), =, (z:))es is a bounded biorthogonal system inY,and [y (2)] ==, (4 (S)).
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Moreover, the equivalent norm on Y, constructed in Theor;em 1, coincides to within a2 numerical multiple with
the original norm on Y: UJ;”O = 8up {ll(s)l =Y =8up { l (J’Il (xs), I)] s S}, ((L‘ = 3’)

COROLLARY 4. Let Y be an arbitrary subspace of the separable Banach space X, Then on X there exists
an equivalent norm ! - |, such that for each z= X\Y

[ _tul
sup

. - i
E ye Y, /.er_R" >t

(i.e., the norm of the projector P:{z] ®Y ~Y , parallel to [x], is strictly greater than one).

Proof. It is known [4] that the space Y has a complete minimal bounded system {yi};‘;I. By a resulf of
Singer [5], there exists a conjugate {yi}le to the system {y} |2, <X* such that suplly;ll - lyili < = and [§i], =
Y. We introduce an equivalent norm on X in the same way as in Theorem 1 (for the system {yi, y’;};il). For
some z¥Y , let

lol . P e Bl 1P 4
Sup{ﬂlx-l*yil wyel, e i 1P]=1.
Write G = [x]*., Then by Theorem 1, [yf] < G and therefore G, [yfh =Y. But G, = {[X]J_)J‘ =[x}, l.e,, z€7,
which contradicts our assumption,

The Banach space X is said to be the unique preconjugate to within isometry to its conjugate X*, if each
Banach space Y such that Y* is isometric to X*, is isometric to X. In this case we also say that the space X*
has unique preconjugate to within isometry, Grotendieck's weil-known theorem [6] states that conjugate spaces
of continuous functions on a bicompactum have unique preconjugate fo within isometry. Some subspaces and
factor-spaces of functional spaces are the unique preconjugate to their conjugate spaces [7, 8]. On the other
hand, the space /; has an uncountable family of pairwise nonisomorphic preconjugate spaces [9].

THEOREM 2. Let the Banach space X have a complete biorthogonal bounded system {z;, z; Jier . Then on
X there exists an equivalent norm such that in this new norm the space X is the unique preconjugate to within
isometry to its conjugate.

Proof. Without loss of generality, we may assume that l|x{ll, = 1 and ix;l = C < =, where || - iy is the
original norm on X. We introduce on the space X*thenew norm |l - ||, setting for each z* = X*

o] = max [ Sqlo* by sup | PF (@b

Clearly, the norm | - il is equivalent to the original norm on X*, It is easily verified that the unit sphere of the
space X*, || - [) is closed in the topology of o (X*, X). Thus the space (X*, I * ) is conjugate to the space X,
- 1), where I - Il is some equivalent norm to the original norm onX. Let Ybe a Banach space suchthat Y*isiso-

metric to X*, Il - ). Denote by 7y the natural imbedding of X in X**, and by 7y the natural embedding of Y
in X** (we are identifying the spaces X* and Y*). Since Y is preconjugate to X*, ri{ry (Y), X*) = 1, and by Corol~
lary 1 snx(X) = me(¥Y). We show that in fact we have equality mx(X)=sn,(¥) . This will also mean that the spaces
X and Y are isometric, Since X is preconjugate to X*, X#¥* = X* @ (n (X)), If ny(X) = 5,(Y), then (n(¥))t

(z(X)*, and thus X* & (a,.(Y))t == X% | je,, V= T/ mymnyt # X* ; this contradiction completes the proof
of the theorem.
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CAPACITY AND CONTINUATION OF FUNCTIONS WITH
GENERALIZED DERIVATIVES

V. M. Gol'dshtein UDC 517.54:517.514

In this article we continue our study of the conditions on the boundary of a region [1-3], for which it is
possible to continue functions in Sobolev's classes over the boundary of the region, preserving class. This
problem was considered for regions with sufficiently smooth boundary by Nikol'skii [4], Babich [5], and for
regions with Lipshitz boundary by many authors: Calderon [6], Solntsev [7], Smith [8], Besov and Il'in [9-11],
Burenkov [12-13], and others. A detailed bibliography can be found in the above-mentioned articles.

The main aim of this article is to obtain necessary and sufficient conditions on the boundary of a planar
region, so that it and its complement simultaneously admit continuation of functions in the classes Lé) (WE)) over
the boundary of the region. The region is assumed to be bounded and simply-connected.

A necessary and sufficient condition on the boundary of a region as in the case of the space L) (W) [1] or
Bé (I<1, Ip=2) [2-3] is the condition obtained by Ahlfors [14], who was studying the continuation of quasicon-
formal homeomorphisms of planar regions. In the planar case, this condition coincides with the necessary
and sufficient condition for continuation in the class BV, obtained by Burago and Maz'ya [15], if we require that
the condition is satisfied simultaneously for the region and its complement.

The method of proof we shall use is connected with the study of the behavior of the capacity induced by the
space Lé. We present this in such a way as to select the small number of properties of the capacity (not depend-
ing a priori on the nature of the space} which give necessary conditions for continuation. We shail prove these
properties of the capacity only for the spaces Lp.

The study of sufficient conditions is connected with the invariance of the spaces Lé for quasi-isometries
(16l.

For a region in n-dimensional Euclidean space R% (n > 2), the results we obtain remain applicable, but
as a set of separate necessary conditions and a set of separate sufficient conditions, which do not coincide,

1, FORMULATION OF THE BASIC RESULTS. PROOF OF SUFFICIENCY

1.1. Ahlfors' Condition for a Nonbounded Planar Simply

Connected Region [14]

Let the boundary v of the bounded simply connected planar region G be a Jordan curve. The region G
satisfies Ahlfors' condition, if for any triple of points &, &, & =y we have the inequality 1§ — &1 < Clg; = &l,
if the point & lies between the points £ and §. The constant C > 1 does not depend on the choice of the triple
£ &, &-

THEOREM 1.1 [14]. Let the boundary ¥ of a nonbounded simply connected region G be a Jordan curve
satisfying Ahlfors’ condition. Then there exists a homeomorphism ¢:& ~ R\G fixed on the boundary, i.e.,
o) =x for all z=y., differentiable inside the region, and satisfying for all z, y=G the inequalities

1 _ le@—oWw)
PSP O

where the constant P(C) depends only on the constant in Ahlfors' condition.
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