
N O R M I N G  S U B S P A C E S ,  B I O R T H O G O N A L  S Y S T E M S ,  A N D  

P R E C O N J U G A T E  B A N A C H  S P A C E S  

B .  V.  G o d u n  a n d  M.  I .  K a d e t s  UDC 513.88 

The s u b s p a c e  F of the conjuga te  space  X* o f t h e B a n a c h  space  X is ca t ted  n o r m j n g ;  if its D icksme  c h a r -  
a c t e r i s t i c  

r (F)== .nO f( , ,(x)l F} X} 

is strictly greater than zero. This characteristic of the subspace F may also be catcu[ated by the following 
formula [I]: 

[I] F - -  xll } i 
r ( F ) = i n f [ ~ : x ~ X , F ~ p  ~ = ll_prl I , 

w h e r e  P F  is a p r o j e c t o r  f r o m  ~(X) �9 F• onto ,~(X), pa ra l l e l  to F • the annih i la tor  of l ~ in the space  X** (r is the 
na tu ra l  embedding of X in X**). F o r  subse t s  U ~ X ,  V e X * ,  we define the c h a r a c t e r i s t i c  of V re la t ive  to U: 

r ( V , V ) =  inf ( s u p i ~  : v ~ V } : u ~ U } .  

In the c a s e  when U and V a r e  subspaees  of X and X*, r e s p e c t i v e l y ,  then r(V, U) = II P ii -1, w h e r e  P is a p r o j e c t o r  
f r o m  U $  Vl onto U, pa ra l l e l  to V• the annih i la tor  of V in the space  X [2]. 

As van Duls t  and S inger  showed [3], if F is a s e p a r a b l e  subspace  of X*, then on X the re  exis ts  an equiva-  
lent n o r m  such  that in this n o r m  the c h a r a c t e r i s t i c  of each  subspace  not conta in ing  F is s t r i c t l y  less  than one. 
We wil t  show that  the re  exis ts  an equivalent  n o r m  on X with this p rope r ty  for  nonsepa rab i e  subspace  P~X*o 

We reca l l  that  the s y s t e m  of e l ement s  { x J ~  of the Banach space  X is cal led min imal ,  if the re  exis ts  a 
s y s t e m  of l inear  funct ionals  {x*]iEi c X* (catted the c o n j u g a t e o f  the or ig ina l  s y s t e m ) ,  such  that  x~ (xj) = 5i, j. 
A min imal  s y s t e m  toge the r  with its coniugate ,  {x, x~*]~z , is ca l led  a b ior thogonaI  s y s t e m .  A b ior thogonai  s y s -  
t em  is ca l led  bounded,  if supllx, ll" [Ix~[l< o o .  

THEOREM 1. Let  {x~,x*}i~ be a bounded b ior thogonal  s y s t e m  in the Banach space  X, and let F = [x~]. 
Then on X t h e r e  exis ts  an equivalent  n o r m  such  that  in the new n o r m ,  for  any subspace  G c X *  not conta in ing  
P, r(G, {xl}r < i. 

, 
Proof .  We shal l  a s s u m e  that  I[x~ll0 = t (r ~ I) and supl]xi I]0 ~-~ C < c o ,  where  ]1 �9 ]]0 is the o r ig ina l  n o r m  on 

X. We in t roduce  a s y s t e m  of p r o j e c t o r s ,  connec ted  with the s y s t e m  (xi, x~}~e~ : 

P i  (x) = x* (x) x~, Q~ (x) --- x - Pi  (x) (x ~ X). 
* 

C l e a r l y ,  I~ Pi  ]10 = tl Pi  It0 = Itxi II- tlx~ It -< C. On X we in t roduce  a new n o r m  tl �9 l!, se t t ing  fo r  each  x ~ X  

Clearly, the norm tl �9 {I is equivalent to the original norm: 

c+ ~ II::ll0 ~ II zl < c.IIx~,o. 

LEMMA I. For any i~l, llxi[! = llx*[ = llPi[l-= [IP~II = i. 

Proof. Since llx i][0 = i, then llx ill= max{c/(c + i), I} = I. We now calculate IIx~II: 

�9 ~ II < o~.  i - T z V - " "  = z~ + v, P ,  (v) = 0 = o ~ . [  ~ -  : P,(v)  =.0  = 
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= s u p  .P i (y) :O ==sup ~xi+yll:Pi(y)=O. 

But i f P i ( y )  = 0 ,  then Ilx i + y l l - >  IIPi(xi +y)] l  0 = I]x ill 0 = 1. Thus llx~[I - 1. On the o the r  hand, IIx~ll-> ! ( x ~ , x i ) [ /  
fix i [I = 1. Thus IIx i II = llx~tl = 1 and hence  II Pi II = II P~II = Jlx il}. Ilx~ll = 1. 

LEMMA 2. If for  s o m e  i ~ I  and x ~ X  P~(x)=xl  and tlQi(x) tl - l / ( C  + 1), then llxll = 1. 

P roof .  S ince  Pi(x) = xi,  t h e e l e m e n t  x may  be w r i t t e n  in the f o r m  x = x i + Qi(x). Then 

c 

(, + o, <=),), ,, u Q, <=),,}: + no, +, ,  ,. + ,),i o,<=> ,. 

On the o t h e r  hand,  IIx II-> [1 Pi(x)I1 o = IIx i I[ o = 1. 

LEMMA 3. F o r  any ~ I  and each  x*mX 

~P[(x*)ll+ 2(c_+_t) IIQi (x )~  <~x*]l .  

P roo f .  Fix  i ~  I ;  i t  is su f f i c i en t  to e s t a b l i s h  the r e q u i r e d  inequal i ty  only fo r  those  x* ~ X *  fo r  which  
Ix* (xi)l > O. Us ing  L e m m a s  1 and 2, we obtain  IIx*ll=sup{ I (x*, x)l: [[ x II~t}>~sup{ I (x*,x) I: P~ (x}= x~, JQi (x)I[ ~< t/(C + 

r tt  
l)} ~>l (x*, x~) I -]- sup { l(x*, Q~ (x}l: II Q~ (x)]i~.< t / (C-t-  t)} ~ liP* (x*) ~ -t- sup { ] Q ~ ( x ) ,  x) l :~ x ]] <~ i/2 (c A- t)} >7 ~ p~ (x*) II -t- 

~BQ; (=*)11. 2 ( c +  

LEMMA 4. In the n o r m  II �9 II, e ach  e l e m e n t  x~ is a s t r i c t l y  exposed  point of the unit  s p h e r e  of the s p a c e  X*, 
i . e . ,  i f  

{I,~}~'=~ c-X*,  ~ f , l =  t ( n =  t , 2  . . . ) ,  l im/n (x  0 = t ,  (*) 
i~-+oo 

then lira ~la - - x [ ~ =  0. 
D--p~ 

o o  

Proo f .  Le t  the s e q u e n c e  {fn}n=l s a t i s f y  condi t ion (*). Then,  apply ing  L e m m a  3, we obta in  

~ I . -  x; II < I}P; </~> - x; I] + li Q; (i~ = !1i. (~ ,> x; - x;I] 

+ II Q* (/.)II < I / .  (x:) - x I. ii x* II + 2 (c § t) (11/. It - -  II P* ( / . ) I )  = 1/. (=,) - x I ~ 2 (C -+- 1) ( 1 - -  I 1~ (xz) I ) --+- 0 

a s n ~  Jo. 

We return to the proof of the theorem. Let G be a subspace of X*suchthat r(G, {x~}~,) = i .  For arbitrary 
i ~ l  , there exists a sequence {/n}n~=, ~ G, ]]/~ I[ == I,  such that lira/n(x~) = l] x~[[ ---- i .  By Lemma 4 ]im IIfn --:c*II == 0, 

�9 $ 
i.e., x~ ~ G. Thus the space G contains all the elements x i ( i~I )  , and hence contains the subspace F generated 

by them. 

From this theorem, we immediately obtain: 

COROLLARY 1. Let {x~, x ~ l ~  be a bounded biorthogonal system in the Banaeh space X, and let F = 
[x*]. Then on X there exists an equivalent norm such that in this new norm, for any subspace Go-X* not con- 

taining F, r(G) < I. 

COROLLARY 2. Let {x{,x*}{~ be a bounded biorthogonai spanning system in the Banach space X (i.e., 
[x~] = X*). Then on X there exists an equivalent norm such that in this new norm, r(G) < i for each subspace 

G~X*. 
L e t X  = c0(S); then X* = /~(S) and X** = m(S). Denote  by u0 the na tu r a l  imbedd ing  of X in X**,  and by ~r~ 

the  na tu ra l  imbedd ing  of X* in X***.  

COROLLARY 3. Le t  Y = m(S) and G be a s u b s p a c e  of Y* such  that  r (G,  ~r0(c 0 (S)) =1.  Then G con ta ins  

~ (l, (S)). 

In fact, if {x~L~s is a natural basis of the space c0(S), then the conjugate system {xT}~es is a natural 
basis of the space l, (S). Thus {re(z0, a, (x~*)}~s is a bounded biorthogonal system in Y, and [n~ (x~*)] = ~, (l~ (S)). 
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M o r e o v e r ,  the  equ iva l en t  n o r m  on Y, c o n s t r u c t e d  in T h e o r e m  1, c o i n c i d e s  to wi th in  a n u m e r i c a l  m u l t i p l e  wi th  
the  o r i g i n a l  n o r m  on Y: !{xl{0 = s t lp / lx (J I  : ,  ~ St-----sup {{ (n~ (x~), x ) ] :  s ~ S], (x ~ Y). 

C O R O L L A R Y  4. Le t  Y be an a r b i t r a r y  s u b s p a e e  of the  s e p a r a b l e  Banaeh  s p a c e  X. Then on X t h e r e  e x i s t s  
an equ iva l en t  n o r m  I[ �9 II, such  tha t  f o r  e ach  z ~ X \ Y  

uP -[ [i kz ..}_ y ll : g ~  }-- }~ > 

( i .e . ,  the  n o r m  of the  p r o j e c t o r  P : [ x ]  �9 y - ~  y , p a r a l l e l  to ix],  is  s t r i c t l y  g r e a t e r  than one).  
r , o o  

P r o o f .  It is  known [4] tha t  the s p a c e  Y has  a c o m p l e t e  m i n i m a l  bounded s y s t e m  ~Yi~i=l. By a r e s u l t  of 
S i n g e r  [5], t h e r e  e x i s t s  a con juga t e  {Yi}i=l to the  s y s t e m  {g*}F=~ ~ X *  such  tha t  sup  l[y i ]t �9 Ily~li < ~ and [g*l,- 
Y. We i n t r o d u c e  an equ iva l en t  n o r m  on X in the s a m e  w a y  as  in T h e o r e m  1 (for the  s y s t e m  {Yi, Yi l i= l  �9 F o r  
s o m e x ~ Y ,  le t  

II ~ 11 , 
sup i~-~+Yil : Y ~ ] "  k ~ R ) = i l P i l = ,  i .  

) 

Write G = ix] • Then by Theorem I, [y~] c G and therefore G~ ~ [Y~IJ- = Y- But G• = ([x]l) • = [x], i.e., x~ Y, 

which contradicts our assumption. 

The Banach space X is said to be the unique preconjugate to within isometry to its conjugate X*, if each 

Banach space Y such that Y* is isometric to X*, is isometric to X. In this case we also say that the space X* 

has unique preconjugate to within isometry. Grotendieck's well-known theorem [6] states that conjugate spaces 

of continuous functions on a bicompactum have unique preconjugate to within isometry. Some subspaces arid 

factor-spaces of functional spaces are the unique preconjugate to their conjugate spaces [7, 8]. On the other 

hand, the space 11 has an uncountable family of pairwise nonisomorphic preconjugate spaces [9]. 

THEOREM 2. Let the Banach space X have a complete biorthogonal bounded system {xr x~]i~ . Then on 

X there exists an equivalent norm such that in this new norm the space X is the unique preconjugate to within 
isometry to its conjugate. 

Proof. Without loss of generality, we may assume that ]Ix~II 0 = 1 and ]]xilI -< C < ~, where H �9 il 0 is the 

original norm on X. We introduce on the space X* the new norm I[ �9 [], setting for each x* ~ X* 

!lx*ii = max II x* I1o, sup [ I P ~  (x*) ] lo  �9 

Clearly, the norm I[ �9 II is equivalent to the original norm on X*. It is easily verified that the unit sphere of the 

space (X*, II �9 li) is closed in the topology of a(X*, X). Thus the space (X*, [I �9 ]i) is conjugate to the space ,rX~ 

II " II), where I[ �9 II is some equivalent norm to the original norm onX. LetYbe a Banachspace suchthat Y'is iso- 

metric to (X*, II �9 II). Denote by 7r x the natural imbedding of X in X**, and by ~y the natural embedding of Y 

in X** (we are identifying the spaces X* and Y*). Since Y is preconjugate to X*, r(~y(Y), X*) = i, and by Corol- 

lary 1 ax(X)--~a~(Y). We show that in fact we have equality ~x(X)=a~.(Y) . This will also mean that the spaces 
X and Y are isometric. Since X is preconjugate to X*, X*** = X* @ (ax(X)) ~. K r~x(X)~ ay(Y), then (~.(y))• 

(ax(X)) • , and thus X* G (u~(Y))• 4= X*** , i.e., Y* = x***/(ay(y))j_ ~= X* ; this contradiction completes the proof 
of the theorem. 
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C A P A C I T Y  A N D  C O N T I N U A T I O N  OF F U N C T I O N S  W I T H  

G E N E R A L I Z E D  D E R I V A T I V E S  

V. M. G o l ' d s h t e i n  UDC 517.54:517.514 

In this ar t ic le  we continue our study of the conditions on the boundary of a region [1-3], for which it is 
possible to continue functions in Sobolev's  c lasses  over  the boundary of the region, preserving  class .  This 
problem was considered for regions with sufficiently smooth boundary by Nikol 'skii  [4], Babich [5], and for 
regions with Lipshitz boundary by many authors:  Calderon [6], Solntsev [7], Smith [8], Besov and Win [9-11], 
Burenkov [12-13], and others.  A detailed bibliography can be found in the above-mentioned ar t ic les .  

The main aim of this a r t ic le  is to obtain neces sa ry  and sufficient conditions on the boundary of a planar 
region,  so that it and its complement  s imultaneously admit continuation of functions in the c lasses  L~ (W~) over  
the boundary of the region. The region is assumed to be bounded and s imply-connected.  

A necessa ry  and sufficient condition on the boundary of a region as in the case of the space L~ (W~) [1] or 
B / (1 < 1, lp = 2) [2-3] is the condition obtained by Ahlfors [14], who was studying the continuation of quasicon-  
formal  homeomorphisms  of planar regions.  In the planar ease ,  this condition coincides with the necessa ry  
and sufficient condition for  continuation in the c lass  BV, obtained by Burago and Maz 'ya  [I5}, if we require  that 
the condition is satisfied s imultaneously for the region and its complement.  

The method of proof we shall  use is connected with the study of the behavior of the capacity induced by the 
L~. We present  this in such a way as to se lect  the smal l  number of proper t ies  of the capaci ty (not depend- space  

ing a priorit" on the nature of the space) which give. necessa ry  conditions for continuation. We shall prove these 
propert ies  of the capaci ty only for the spaces L~. 

The study of sufficient conditions is connected with the invariance of the spaces L / for quas i - i somet r i c s  

[161. 

For  a region in n-dimensional  Euclidean space R n (n > 2), the resul ts  we obtain remain applicable, but 
as a set of separa te  neces sa ry  conditions and a set  of separa te  sufficient conditions, which do not coincide. 

1. F O R M U L A T I O N  OF T H E  B A S I C  R E S U L T S .  P R O O F  OF S U F F I C I E N C Y  

1 . 1 .  A h l f o r s '  C o n d i t i o n  f o r  a N o n b o u n d e d  P l a n a r  S i m p l y  

C o n n e c t e d  R e g i o n  [ 1 4 ]  

Let the boundary "g of the bounded simply connected planar region G be a Jordan curve.  The region G 
sat isf ies  Ahifors '  condition, if for  any tr iple of points ~i, ~, ~3~*f we have the inequality }~3 - ~11 < CI~I- ~21, 
if the point ~ lies between the points (~ and 42. The constant  C > 1 does not depend on the choice of the triple 

THEOREM 1.1 [14]. Let the boundary 7 of a nonbounded simply connected region G be a Jordan curve  
sat isfying Ahlfors '  condition. Then there exists a homeomorphism ~p : g - *  R~\G ILxed on the boundary, i.e., 
go(x) = x for all x ~  ? ,  differentiable inside the region, and satisfying for all x, y ~ G the inequalities 

~(c) <~ I=--yt  

where  the constant  P(C) depends only on the constant in Ahlfors '  condition. 
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