B. V. Godun and M. I. Kadets

UDC 513.88

A system of elements $\{x_i\}_{i\in I}$ of a Banach space X is called minimal if each element of the system does not belong to the closed linear hull of the remaining ones. This is equivalent to saying that there exists a system of linear functionals $\{x_i^*\}_{i\in I} \subset X^*$ (called the conjugate of the original system) such that $x_i^*(x_j) = \delta_{ij}$. If the linear hull of system $\{x_i\}_{i\in I}$ is dense in X ($[x_i] = X$), then system $\{x_i\}_{i\in I}$ is called complete. A Banach space X is called a Grothendieck space if in X* weak* and weak convergence of sequences coincide (see [1]). "Typical" examples of Grothendieck spaces are the so-called injective spaces and, in particular, the space m(S) of functions bounded on the set S with the uniform norm (see [1]). It is known [2] that a nonreflexive Grothendieck space cannot have a complete minimal system, whose conjugate is a total system. In this note we prove that certain Grothendieck spaces cannot have any complete minimal systems.

Let τ be a cardinal number. We denote by $m_{\tau}(S)$ the subspace of m(S) consisting of those functions x(s) for which the power of the support $S(x) = \{s \in S : x(s) \neq 0\}$ does not exceed τ . Let T be a subset of S. We identify the space $m_{\tau}(T)$ with the (complemented) subspaces of $m_{\tau}(S)$ formed of those functions whose supports lie in T. For a normed space X we denote by dens X its weight, i.e., the minimal power of a set dense in X.

<u>LEMMA.</u> Let $X = m_T(S)$ and $Card S > \tau$, and let Y be a subspace of X such that the factor-space E = X/Y is reflexive. Then there is a subset $T \subseteq S$ such that $Card T < \tau$ and $m_{\tau}(S \setminus T) \subseteq Y$.

Proof. We suppose that the assertion does not hold. Since $Y \neq m_T(S)$ there is an element $x_1 \in X$ of unit norm that does not belong to Y. We set $T_1 = S(x_1)$ and $R_1 = S \setminus T_1$. Since $Card T_1 \leq \tau < Card S$, by our assumption $m_{\tau}(R_1) \subset Y$. Hence we can find an element $x_2 \in m_{\tau}(R_1) \setminus Y$. $x_2 = 1$. We set $T_2 = T_1 \cup S(x_2)$ and $R_2 = S \setminus T_2$. Since $Card T_2 \leq \tau < Card S$, we can find an $x_3 \in m_{\tau}(R_2) \setminus Y$, $||x_3|| = 1$. By continuing this process indefinitely, we obtain an uncountable family of elements $\{x_i\} \not\in Y$ of norm 1 whose supports are pairwise disjoint; $S(x_i) \cap S(x_j) = \emptyset$ $(i \neq j)$. Because the family $\{x_i\}$ is uncountable, it contains a subsequence $\{x_{i_n}\}$ such that the norms of the images of elements under the factor-mapping $F: X \to E$ are uniformly separated from $||F(x_{i_n})|| \geqslant \delta > 0$ for all $n = 1, 2, \ldots$. Since $\{x_{i_n}\}_{n=1}^{\infty}$ is normalized and disjoint, it is equivalent to the natural basis in the space c_0 . The operator $A = F|_{[x_{i_n}]_1}$ is a continuous linear operator mapping a space isometric to c_0 into a reflexive space E. Hence, A is a compact operator. Since the sequence $\{x_{i_n}\}_{n=1}^{\infty}$ converges weakly to the zero element (as the natural basis for c_0), the sequence of images $\{A(x_{i_n})\}_{n=1}^{\infty}$ must converge to zero in the norm topology of E. But $\|A(x_{i_n})\| = \|F(x_{i_n})\| \geqslant \delta > 0$ for all $n = 1, 2, \ldots$, and so we reach a contradiction.

THEOREM 1. If Card $S > 2^{\tau}$, then the space $m_T(S)$ does not have complete minimal systems.

<u>Proof.</u> We suppose that despite the assertion of the theorem, the space $X = m_T(S)$ has a complete minimal system $\{x_i\}_{i \in I}$. We can show that $m_T(S)$ is isomorphic to the space C(Q), where C is a certain σ -Stonian compact set; then it follows that $m_T(S)$ is a Grothendieck space (see [3] and [4]). Therefore, by a theorem of Johnson [1] the space $\Gamma = [x_i^*]$ must be reflexive. We denote by $Y = \Gamma_1$ the annihilator of Γ in X and set E = X/Y. Since a reflexive subspace of a dual space is weak* closed (see [4, Proposition 1]), $\Gamma = (\Gamma_1)^\perp = Y^\perp = E^*$. Hence, the space E is reflexive, because its dual is reflexive. By the lemma there is a set $T \subset S$ such that C and $T \subseteq T$ and $T \subseteq T$ and $T \subseteq T$ be the natural projection from $T \subseteq T$ onto $T \subseteq T$ and $T \subseteq T$. For each $T \subseteq T$ is set $T \subseteq T$. Since $T \subseteq T$ is a minimal system in the space $T \subseteq T$ and $T \subseteq T$ is a minimal system in the space $T \subseteq T$. Hence, $T \subseteq T$ and $T \subseteq T$ are $T \subseteq T$. On the other hand, since the system $T \subseteq T$ is complete in $T \subseteq T$, we have $T \subseteq T$ and $T \subseteq T$. Thus $T \subseteq T$ are $T \subseteq T$. Thus $T \subseteq T$ are $T \subseteq T$. Thus $T \subseteq T$ are $T \subseteq T$. Thus $T \subseteq T$ are $T \subseteq T$. Thus $T \subseteq T$ are $T \subseteq T$.

†In the case when $\tau = \aleph_0$ this result was proved somewhat earlier by A. N. Plichko.

Kharkov Institute for Public Building Engineers. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 14, No. 4, pp. 67-68, October-December, 1980. Original article submitted March 5, 1980.

COROLLARY. If $X = m_{\tau}(S)$ and $Card S > 2^{\tau}$, then every factor-space of X of weight dens X does not have complete minimal systems.

In fact, as Levinson and Johnson have remarked (see [5, Remark 5]), the availability of a complete minimal system in a Grothendieck space Z is equivalent to the existence in Z of a reflexive factor-space of weight dens Z. Let E be some factor-space of X of weight dens X. Since the space E^* is identified with a weak* closed subspace in X^* , E is a Grothendieck space. If we assume that E has a complete minimal system, then it must have a reflexive factor-space E_1 of weight dens E_1 = dens E = dens X. It is easy to see that E_1 is a factor-space of X, and so X must have a complete minimal system.

We can treat the space m(S) in an obvious way as a space of continuous function on the Stone-Čech compactification of the set S. It is known that the space m(S) has a complete biorthogonal bounded system (i.e., $\sup \|x_i\| \cdot \|x_i^*\| \le C < \infty$; see [5]). The next theorem shows that these systems in the space m(S) have a certain "strange" property.

THEOREM 2. Let X = C(K) be a Grothendieck space and $\{x_i\}_{i \in I}$ be a complete minimal bounded system in X. Then every subsequence of $\{x_i\}_{i \in I}$ contains a subsequence equivalent to the natural basis of the space l_1 .

<u>Proof.</u> We assume that $||x_i|| = 1$ and $||x_i^*|| \leqslant C$ $(i \in I)$. Since X is a Grothendieck space the space $\Gamma = [x_i^*] \subset X^*$ is reflexive and its unit ball U is weakly compact. We consider an arbitrary subsequence $\{x_{i_1}\}_{i \in I}^{\infty}$ of the system $\{x_i\}_{i \in I}$, and assume that it is weakly fundamental. Then the sequence $\{x_{i_{2k}} - x_{i_{2k-1}}\}_{k=1}^{\infty}$ converges weakly to the zero element, and by condition for the weak compactness of bounded sets in the space $C(K)^*$ (see [6]), this convergence to the zero element must be uniform on the set U:

$$\lim_{k\to\infty}\sup_{f\in U}|f(x_{i_{2k}}-x_{i_{2k-1}})|=0.$$

But the system $\{x_i\}_{i \in I}$ is minimal and so for any $k=1,2,\ldots$ we have

$$\sup_{t \in U} |f(x_{i_{2k}} - x_{i_{2k-1}})| \geqslant \frac{1}{C} |x_{i_{2k}}^*(x_{i_{2k}} - x_{i_{2k-1}})| = \frac{1}{U}.$$

Thus, no subsequence of system $\{x_i\}_{i \in I}$ can be weakly fundamental. The conclusion of the theorem now follows from the well-known Rosenthal characterization of spaces containing l_i (see [7]).

LITERATURE CITED

- M. M. Day, Normed Linear Spaces, Springer-Verlag (1973).
- 2. W. B. Johnson, Proc. Am. Math. Soc., 26, No. 3, 467-468 (1970).
- 3. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer-Verlag, Berlin (1973).
- 4. H. P. Rosenthal, J. Funct. Anal., 6, 176-214 (1969).
- 5. W. J. Davis and W. B. Johnson, Stud. Math., 45, No. 2, 173-179 (1973).
- 6. R. E. Edwards, Functional Analysis [Russian translation], Mir, Moscow (1969).
- 7. H. P. Rosenthal, Proc. Nat. Acad. Sci. USA, 71, 2411-2413 (1974).