TWO COUNTER-EXAMPLES IN NONSEPARABLE BANACH SPACES

G.A. ALEXANDROV AND M.I. KADEC

It is shown that the well-known theorem of Kadec for the H_{Γ} renorming of separable Banach spaces, when Γ is a norming subspace in the dual, cannot be extended to the class of nonseparable Banach spaces.

1. INTRODUCTION

Let X be a Banach space and let Γ be a total subspace in the dual space X^* .

The norm $\|.\|$ on a Banach space X is said to have the H_{Γ} -property, if for sequences on the unit sphere, $\sigma(X, \Gamma)$ and norm convergence coincide, that is whenever $x_0, x_n \in X$ $(n < \infty)$, $\lim_n ||x_n|| = ||x_0||$ and $\lim_n f(x_n) = f(x_0)$ for all $f \in \Gamma$, then $\lim_n ||x_n - x_0|| = 0$.

The norm $\|.\|$ on a Banach space X is said to have the K_{Γ} -property, if the $\sigma(X, \Gamma)$ and norm topologies coincide on the unit sphere.

Obviously, if the norm has the K_{Γ} -property, then it has the H_{Γ} -property. The converse is not true.

When $\Gamma = X^*$, then the H_{X^*} -property is known as the *H*-property or the Kadec-Klee property and the K_{X^*} -property is known as the Kadec property.

If the Banach space X admits an equivalent norm with the H_{Γ} or K_{Γ} property, then we write $X \in (H_{\Gamma})$ or $X \in (K_{\Gamma})$.

It is easy to see that, if Γ is a total separable subspace in X^* , then $X \in (K_{\Gamma})$ if and only if $X \in (H_{\Gamma})$.

The following result of Kadec [5] is well-known: Let X be a separable Banach space and Γ is a norming subspace in X^* . Then $X \in (H_{\Gamma})$.

Naturally, the question arises: Can we extend this result to the class of nonseparable Banach spaces?

The answer to this question is negative.

Plicko proved in [7] that, if Γ is a total subspace in X^* such that dens $(\Gamma) < \text{dens}(X)$, then $X \notin (K_{\Gamma})$. In particular, it follows that, if X is a separable Banach space with a nonseparable dual space X^* , then $X^* \notin (H_X)$.

Received 20 January 1993

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

Here, we give two examples of total subspaces Γ in X^* , for some concrete Banach spaces X, with dens(Γ) = dens(X), such that $X \notin (H_{\Gamma})$.

We denote by $\overline{lin}(A)$ the closed linear hull of the set $A \subset X$; dens(X) is the density character of X, that is, the smallest cardinal for which X has a dense subset of the same cardinality.

Let Γ be a subspace of X^* . We say that Γ is norming if its Dixmier characteristic

$$r(\Gamma) = \inf_{\|\boldsymbol{x}\|=1} \sup_{f \in \Gamma} \frac{|f(\boldsymbol{x})|}{\|f\|} > 0.$$

LEMMA. Let (X, ρ_1) be an uncountable separable metric space, (Y, ρ_2) be a separable metric space and $T: X \to Y$ be an arbitrary map. Then there exist point $x_0 \in X$ and sequence $\{x_n\}_{n < \infty}$ in $X, x_n \neq x_0, \forall n < \infty$, such that $\lim_n \rho_1(x_n, x_0) = 0$ and $\lim_n \rho_2(Tx_n, Tx_0) = 0$.

In this case, we say that x_0 is a point of partial continuity for the map T.

2. FIRST EXAMPLE

Let AP be the Banach space of all almost periodic functions defined on the real line \mathbb{R} with the supremum norm $\|.\|_{\infty}$.

We define the linear functionals $\delta_t \in AP^*$ for every $t \in \mathbb{R}$ by the equality $\delta_t(f) = f(t)$, $f \in AP$, and define the subspace $\Gamma = \overline{\lim}(\delta_t)_{t \in \mathbb{R}}$ in AP^* .

The subspace Γ is norming.

Really, if $f \in AP$, $||f||_{\infty} = 1$, then there exists a sequence $\{t_n\}_{n < \infty} \subset R$ such that $\lim_{n} |f(t_n)| = 1$, that is $\lim_{n} |\delta_{t_n}(f)| = 1$. Since $\sup_{\delta \in \Gamma} (|\delta(f)| / ||\delta||) \ge |\delta_{t_n}(f)|, \forall n < \infty$, then $r(\Gamma) = 1$.

PROPOSITION 1. The space $AP \notin (H_{\Gamma})$.

PROOF: Let $f_{\lambda}(t) = e^{i\lambda t}$, $\lambda \in \mathbb{R}$, and let ||.|| be an equivalent norm on Banach space AP.

We examine the function $\lambda \mapsto ||f_{\lambda}||, \lambda \in \mathbb{R}$.

According to the Lemma, there exists a point of partial continuity for this function, that is, there exist $\lambda_0, \lambda_n \in \mathbb{R}$, $\lambda_n \neq \lambda_0$ $(n < \infty)$ such that

(1)
$$\lim \lambda_n = \lambda_0,$$

(2)
$$\lim_{n} \|f_{\lambda_n}\| = \|f_{\lambda_0}\|.$$

From (1) and the definition of the functions f_{λ_n} we get $\lim_n f_{\lambda_n}(t) = f_{\lambda_0}(t), \forall t \in \mathbb{R}$, which is equivalent to

(3)
$$\lim_{n} \delta_{t}(f_{\lambda_{n}}) = \delta_{t}(f_{\lambda_{0}}), \quad \forall t \in \mathbb{R}.$$

Consequently, from (3) for all $\delta \in \Gamma$ we have

(4)
$$\lim_{n \to \infty} \delta(f_{\lambda_n}) = \delta(f_{\lambda_0}).$$

Now, if we suppose that the space $AP \in (H_{\Gamma})$ then from (2) and (4) it follows that $\lim_{n} ||f_{\lambda_{n}} - f_{\lambda_{0}}|| = 0$ which is, obviously, impossible, since the system $\{f_{\lambda}\}_{\lambda \in \mathbb{R}}$ is minimal (see [6]). The proposition is proved.

3. SECOND EXAMPLE

Let QC[0, 1] be the Banach space of all real-valued functions defined on [0, 1] for which f(t+0) = f(t) for every t, that is, f is continuous from the right and f(t-0) exists for every t with the supremum norm $\|.\|_{\infty}$.

Let *E* be a dense subset in [0, 1] such that the set $E_1 = [0, 1] \setminus E$ is uncountable. We define the linear functionals $\delta_t \in QC[0, 1]^*$ for every $t \in E$ by the equality $\delta_t(f) = f(t), f \in QC[0, 1]$, and define the subspace $\Gamma = \overline{\lim}(\delta_t)_{t \in E}$ in $QC[0, 1]^*$.

The subspace Γ is norming.

Really, if $f \in QC[0, 1]$, $||f||_{\infty} = 1$, then there exists a sequence $\{t_n\}_{n < \infty} \subset E$ such that $\lim_{n} |f(t_n)| = 1$, that is, $\lim_{n} |\delta_{t_n}(f)| = 1$. Since $\sup_{\delta \in \Gamma} (|\delta(f)| / ||\delta||) \ge |\delta_{t_n}(f)|$, $\forall n < \infty$, then $r(\Gamma) = 1$.

PROPOSITION 2. The space $QC[0, 1] \notin (H_{\Gamma})$.

PROOF: For every $s \in E_1$ we define the functions $f_s(t) = 0$, if $0 \leq t < s$ and $f_s(t) = 1$, if $s \leq t \leq 1$. Obviously, $f_s \in QC[0, 1]$ for all $s \in E_1$. Let ||.|| be an equivalent norm on the Banach space QC[0, 1].

We examine the function $s \mapsto ||f_s||$, $s \in E_1$.

According to the Lemma, there exists a point of partial continuity for this function, that is, there exist $s_0, s_n \in E_1$, $s_n \neq s_0$ $(n < \infty)$ such that

(5)
$$\lim_{n} s_n = s_0,$$

(6)
$$\lim \|f_{s_n}\| = \|f_{s_0}\|.$$

From (5) and definition of the functions f_{s_n} we get $\lim_n f_{s_n}(t) = f_{s_0}(t)$, $\forall t \in E$, which is equivalent to

(7)
$$\lim_{n} \delta_t(f_{s_n}) = \delta_t(f_{s_0}), \quad \forall t \in E.$$

Consequently, from (3) for all $\delta \in \Gamma$ we have

(8)
$$\lim_{n \to \infty} \delta(f_{s_0}) = \delta(f_{s_0}).$$

Now, if we suppose that the space $QC[0, 1] \in (H_{\Gamma})$ then from (6) and (8) it follows that $\lim_{n} ||f_{s_n} - f_{s_0}|| = 0$ which is, obviously, impossible, since $||f_{s_n} - f_{s_0}|| = 1$ for all $n < \infty$. The proposition is proved.

REMARKS. (i) The spaces AP and QC[0, 1] possess an equivalent locally uniformly convex norm and, consequently, they have the Kadec property (see [1, 2, 3]).

(ii) Godun proved in [4] that, if $(x_i, f_i)_{i \in I}$ is *M*-basis in the Banach space X and $\Gamma = \overline{\lim}(f_i)_{i \in I}$, then $X \in (H_{\Gamma})$ if and only if the subspace Γ is norming.

This gives rise to the following.

QUESTION. Let X be a nonseparable Banach space and let Γ be a norming subspace in dual the space X^* . What sufficient conditions must Γ satisfy so that X admits the H_{Γ} -property?

References

- [1] G.A. Alexandrov, Locally uniformly convex equivalent norms in nonseparable Banach spaces, (in Russian), Ph.D. Dissertation: Kharkov, 1980.
- G.A. Alexandrov and K.-D. Kursten, 'Some nonseparable Banach spaces which admit equivalent locally uniformly convex norms', in Russian, *Izv. Vyssh. Ucheben. Zaved. Mat.* 7 (1981), 10.
- [3] G.A. Alexandrov, 'Equivalent locally uniformly convex renorming of nonseparable Banach spaces', in Russian, in *Constructive function theory 81 (Varna 1981)* (Bulgar. Acad. Sci., Sofia, 1983), pp. 9-13.
- [4] B.V. Godun, 'On the Markushevich bases', in Russian, Dokl. Acad. Nauk SSSR 266 (1982), 11-14.
- [5] M.I. Kadec, 'On the connection between weak and strong convergence', in Ukraninian, Dopovidi Acad. Nauk Ukrain. RSR 9 (1957), 949-952.
- [6] L.H. Loomis, An introduction to abstract harmonic analysis (D. van Nostrand Co, Toronto, New York, London, 1953).
- [7] A.N. Plicko, 'On the projective resolution of identity, the Markushevich bases and the equivalent norms', in Russian, Mat. Zametki 34 (1983), 719-726.

Department of Mathematics and Informatics University of Sofia 5 J. Bourchier Blvd 1126 Sofia Bulgaria Pravda prosp. 5 Flat 26 310022-Kharkov Ukraine