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Questions about differentiability and relative properties of functions which form an
infinite dimensional subspace of C[0, 1] attracted the attention of several mathemati-
cians (see [2-6]). In particular, in [2] an infinite dimensional linear (nonclosed) manifold
in C[0,1] is constructed whose only anywhere differentiable element is the function
z(t) = 0. In 1990 the authors constructed an infinite dimensional (closed) subspace E
of C[0,1] (actually E isomorphic to I;) having the following properties:

| (1) each function from E (but the zero function) is nowhere differentiable

| and

(2) each non-zero function from E has neither right nor left finite derivative almost
everywhere (in the sense of Lebesgue measure).

This result,which has been circulated as a preprint, was partially generalized by
L. RODRIGUEZ-PI1AZZA in [6]. Namely, using a different technique, he proves that ev-
ery separable Banach space is linearly isometric to a closed subspace X of the space
| of continuous functions on [0, 1], such that every non-zero function in X is nowhere
differentiable.

However, as it is proved by S. BANACH [!], almost all functions in C[0, 1] (in the
sense of Baire category) have neither left nor right (finite) derivative at any point of
[0,1]. And so the following question is natural.

Question. Is there an infinite dimensional closed subspace Y C C|[0, 1] such that
fgcﬁ?non-zero function in Y has neither left nor right finite derivative at any point of

" “Thus the space E still holds some interest, since it gives a partial answer on the
question.

Theorem. There exist a closed infinite dimensional subspace E of C[0,1] and
a subset A of [0,1] of Lebesgue measure one, such that if f € E and f is non-zero

function, then f is nowhere differentiable on [0, 1] and has neither right nor left finite
derivative on the set A.
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Proof. Our basic functions are analogous to the Van der Waerden’s function. Let

fo<z<1/4;
ui(z) = 1/2—:15 1f1/4<x<3/4
z—1 otherwise ,

and extend periodically to R with period 1. Further, let u,(z) = 8 "4, (8" 'z), n =
2,3, .... This sequence of functions has a number of properties. First the number 81—
is the common period of the functions u,(z), un4+1(z),.... The extreme value of the
functions up(z), p=1,2,...n are taken at

1/(4-8°71) + k/(2-877Y), k=0,1,.;p=1,..n,
which are not internal to the intervals

I+(s—1)/4 1+s/4

Jn,s,l = [ gn—1 ’ogn—-1 ] y § = 172a3a4; = 0,1, ---8"'_-1 - 1.

In particular, on each of these intervals each of the functions uy(z), p = 1,...n, is linear
and for any points z;, =2 in the interval J, s; we have

up(Z2) — up(1)
T2 — T

=41, p=1,..n.

Set o, = {2P"!-n: n € N} and pp(z) = Yoneo, Un(z), (p = 1,..n). The sequence
{@p/llwpll}521 in C[0, 1] is equivalent to the unit basis of ;. (This is proved analogously
to the corresponding statement for a lacunary trigonometric system c.f. [3].) Let F =
[p]521 be the closed subspace spanned by {,}92; and let 4(z) be a non-zero function
in E. Given a point ¢ in [0, 1] we now show that 1(z) has no derivative at zg. Since
{p}pey is a basis for E we can write 1 = 372, a;¢; or more precisely ¥ = 3°22/ a;p;
where ¢ = min{i : a; # 0}. Let us assume the existence of a finite derivative of 9 at Zo
denoted 9'(zo). We now choose j big enough to insure 1) j > ¢ and 2) if |z —zo| < 8%
and |z’ — zg| < 8% then

T — Tp ' -z

For n = 27~1 we can find integers l and s, with 1 <1 < 8" 1—1and 1 < s < 4 such that
zg € Jp 4. Choose x = x(n) such that |z — zo| = 87" and the interval connected the
points z and z¢ is contained in J;, 5 ;. Now we make the remark that will be essential
for the proof of the second part of the theorem:

Remark. If in the base 8 the expansion z is z = 0.p1,p2,... then for an even
integer p, z(n) > zo and for an odd integer p, z(n) < z.

Let us consider the ratio

Be) = 9lzo) _ §3 5 Url@) Zurlm)

T — o i=q re€o; T—Zo
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Z o; Z Upgi=1(Z) — Uggi-1(Z0) -

r— X9

i>¢,2-1<n  1<t<m;,m;22"1<n
>« ¥ s
i>q,2-1<n  1<t<m;,m;2-1<n

(We recall that 87" is a period of the functions up41(z), unt2(z), ... and that mineg; =
2i—1), For n' = n + 29! we can find integers I',s' with 1 < I' < 8"~land 1< s <4
such that zg € Jyr ¢ p. Set ' = z(n') to denote a point such that |zg — 2| = 8™ and
the interval connected the points zg and z’ is contained in Jy/ ¢ ;. It is easy to see that

(2) Jn’,s’,l’ C Jn,s,l-

Let us compare the ratio

P(z') — P(z0) _ iai > ur(z') — ur(2o) _

z' — xg ' — xg

i=q TEOo;

Z a; Z Upi—1(Z) — ugi-1(T0) -

'
: . r — T
i>¢,2i71<n!  1<t<m,m}2i-1 <n! 0

Z a; Z +1

i>¢,2°"1<n429-1  1<t<m),m}2i-1<n429-1

with the ratio
$(z) = $(zo)

r—2To

The number of summands in the exterior sums for both ratios is the same (for the
first ratio: 20~ < n = 29-1 and so i < j and for the second ratio 2-! < 2/-1! 4
2971 < 971 4 25-1 = 27 (q < j!), and so ¢ < j). The number of summands in each
interior sum starting with the second is the same too (for each 7 > ¢ + 1, for the first
ratio m;2i! < n that is m;2¢"1 < 29-! and so m; = 27~! and for the second ratio
mi2i—l < 2971 4 2971 < 24-1 4 291 that is m} < 2771 + 1, or m} = 2971). With the
help of (2) one can deduce that corresponding summands in every interior sum starting
with the second coincide for both ratios. Consider now the first interior sums. For the
first ratio m42971 < 2971 or m,y < 2°79. For the second ratio m;2‘1‘1 <2971 42971 or
m; = 2"7 4 1. Thus, the difference between the first interior sum for the second ratio
and the first interior sum for the first ratio is equal to +1. That is

|¢($) — 1/}(:1;0) — '/}(a"’) :f(‘TO)' - |a'qI1
0

T — Iy !

which contradicts (1) and hence completes the proof of the first part of the theorem.
Let us now consider the question about left and right derivatives of functions in
E. For each integer q let

Dy={neN:n=2"14k29"1 jeN; k=0,1} = {n{?},,
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where the elements of {ngq)};?_i_l are arranged in increasing order. For each point z €
[0,1] we denote by z, the p-th digit in the base 8 expansion of z, that isz = 3° »; 877,
Let A4 be the set of points z € [0,1] such that for every natural number ! there exists

8> l SUCh that
T =1 = =1
nf,") = ngq)l =T @) =

s+2
and
T ) =T () =T ¢ = 2.
ns‘ZI-S n.s?li n.s?|25

The standard argument shows that the Lebesgue measure m(4y) = 1, (g =1,2,..)
and, therefore, m(N32;A4) = 1. For A = N2, 4, after repeating the arguments, given
in the first part of the proof and taking into account the remark, we can establish that
each zé(z) € E has neither left nor right derivative at any point z € A. The theorem is
proved.
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