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Summary. The purpose of this work is to show that in every infinite dimensional Banach space
X there exists a sequence (x,), x,€ X, such that card{xe X: I Non> X = me)} = 2, where n is
a permutation of set of integers.

Introduction. Let )" x, be a convergent series in a Banach space X, such that
YlIx,ll = co. Let us denote by OC(x,) the set

{XEX: 31|::N—>Ns X = an(n)}a

where = is the permutation of the set of integers. At the beginning of this
century P. Levy [1] and E. Steinitz [2] have shown that if X is finite
dimensional then OC(x,) is linear i. e. OC(x,) = v+ H where ve X and H is
a subspace of X. In “Scottish Book™ S. Banach asked the question: “Does this
theorem hold in any Banach space X?” The answer is “no” and J. Mar-
cinkiewicz has given a simple counterexample [6]. Independently, the Russian
mathematicians investigating convergence in Banach spaces have constructed
another series, for which OC(') is not linear. However, always the sets OC )
were infinite, for example the algebraic groups. We want to show that
nonlinear OC(-) can be as small as possible, i.e. for some sequence (x,)
card(0C(x,)) = 2.

First, we establish the notation. By L,(Q) we will denote L,(Q, B, 1) where
0 =100, 1]°, B is the o-ring of Borel subsets of Q and A—the standard
probability measure on 8. Measurable function on Q, which equals c(c e R) will
be denoted by c. The greek letters n, o will always denote permutations of the
set of natural numbers. Now we can formulate our main technical result:

PROPOSITION. There exists a sequence (h)™,, h,,eLm(Q). such tHat

a0

N
@) Xh=0 inL(Q1<p<oc and| Y h,,<CoN"1
. n=1

n=1
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(i) there exists a permutation m such that

© N
Y hyw=1 inL(Q)1<p<o and | Y b =1 < C, N~13°
n=1 n=1 p
(iii) if hoe L(Q) and ho = Y. hog for some permutation o then ho = 0 or
ho = 1. B

n=1

THEOREM. In every infinite dimensional Banach space X there exists
a sequence (x,)i=,, x,€X such that

o

(l) Z xn = yO
n=1

(ii) there exists a permutation m such that

Z X = V1 and y, # Yo

n=1

(ili) if there exists a permutation ¢ such that
e8]
S Xow =V then y=yo or y=y;.
n=1

Proof of the Proposition. First we define functions, that form the
sequence (h,).-. Let

m

m—1
1 for <t,<—
n

(1) f"m(t) Zf"m(tp ty, 13,---) =

0 otherwise
for neN, me{l,..., n},
2) gh; = —funfi*t  for neN, me{l,...,n}, je{l,...,n+1}.
The equalities below are obvious:

n n n+1l
3) Y fa=l==3% 3 On;
m=1 m=1j=1
n+1
“) Sm=—2 Gmj
ji=1
) = = Y gy
m=1

Let us consider two series:

flagh +gla+fi+gii+alatalstfi+gd i +giatgis

fi+f%+gil+f%+giz+f%+gil+g%1+f%+g%z+g%2+f%+gia+giy.
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i o
We write first series as Y, h,. Then, the second can be written as ), hy for
n=1 n=1
some permutation 7.
Let us observe that if hy = f% or hy = gh j, then n~ N> and if hypy, =7
or hyw = g&,; then n~ N3,
From (4) we have

Ji(N)

N
z h" =f'r'n+ Z g"m’} Where g;ln,j(N) = hN
n=1 j=1
or
N
Yo ohyo=fn i fu=hy,
n=1

but

This proves (i). Similarly, using (5) and the fact that f 1 =1 we obtain (ii).

J(N)
ot Y guil, < IS, =1/ntr~ N"132
j=1

Proof of (iii): Since L, < L, forany p> 1 it is sufficient to prove (iii) for
p=1. From now on |||, will be denoted |-{.

First of all, let us observe that if hy = Y huu in L,(Q), (4) and (5) (or

n=1
simpler (3)) and definitions of f7, gy, ; imply that h does not depend on k-th
coordinate for every ke N. In this case the Kolmogorov Zero-One Law [5]
says that h, must be a constant function. Thus we can write

(6) hy=s, seN.

For the further proof we will need the following lemma:

LemMa 1. Let (X, X, p) and (Y, 9, v) be probability measure spaces. Let
f, g: X x Y> R be measurable and integrable functions such that

[ y) =F(x), g(x, y) =4
then | f+gl = I/l +lgll[1—2(uxv)(suppf)].
Proof of Lemma 1. We have
I f+gl = wf(x, »)+g(x, yudxvdy = i)j{lf(x)w”(y)ludxvdy

=L § IfG+do)udx+ [ |FC)+gW)pdx]vdy
Y

X —suppfS suppf
> 1g0udx+ § 1f(x)I=1§O)ndx]vdy
Y X-suppSf suppSf

= i[llfll +1gO)I (1 —2p(supp F)]vdy = 1711+ 1411(1 —2p(suppS)-
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Obviously: u(suppf) = x v(suppf), | Fll, = I f i1, Iglly = llgl,, so the Lemma
1 is proved. Now we are able to prove that

1
ho—3

(From (6) it follows that this is equivalent to (iii)). If hy = 1 it holds. Otherwise
(6) implies that [(hy—1| = 1.
Let F,, G,, V, be the following sets
F,={ft:m=1,..., n},
G,={ghm=1,...,nj=1,..,n+1}

() <1,

V,= | F,UG,.

k=1
Given a positive number . We choose KeN such that:

N
8) lho— Y. Bow|| <&  for every N =K
n=1
and for every m> 1> K

2 13 aoll <5

K

Y hym will be denoted by h.

n=1
Let MeN be any number such that
Boiy € Ve Y Fyr41 for n < K.
We define functions h¥*, h,, h*
Bt {hm, if hyp€VyyUFy+y and n>K
" 0 otherwise

h_ _ {ha(n) if ho.(")EGM+1

0 otherwise
h* = ) h¥.
n=K+1
From (3) it follows that h+h* = 1. Thus we have
(10) IB* = |h—1}| = [ho— 1] —lho—h] > 1 9.
Let I, =K and
. 15 ! 1 9 .
(11) l_,'+1 = min {l: Z—Zé < ”";Jh:l‘ g Z—z} J = 0, 1, 2, 3.

(9), (10) justify the above definitions — ((9) implies that [hgemll < 8, for n > K).
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We define

L+1
= h—h*—h; j=1234

Let us remark that r;, j = 1,2,3,41s a sum of all h,( satisfying conditions:
a) [zn>1jy, b) hom® Vr U Fm+1VGu+r-

Applying Lemma 1 to h** and r; (they depend on different coordinates!) we
obtain:
fir;l

(12) [R2* 470 = Al +T" ji=1,2,34

. . " |
since h¥* is an integer valued function, condition |Af*|| < 2 implies A(supphf*)
1
< g On the other hand, from (9) we have

13) - Al < 6

so the triangle inequality gives

5 19
IR = Ih* 47yl =8 > |hF*) =6 > 31— 50

Let us assume that ||h¥*|| > 116. In this case we find I5 such that for

Is
h¥* = Y hy we have 106 < ||h¥*|| < 116.
la+1
We put hy = Y, h, and similarly as above prove that |hsl| 2 |h%*| — 5 > 98.

la+1
5

However, 1> Y, 1Al = X uﬁjll > 1—96+96 = 1, which is a contradiction.
=1 j=1
<

Thus [h$*] < 115. We have

4 _ 4 4 , 4
1> Y Ihl = 3 Ih—h*=rl = X A +rl— Y IRl
ji=1 ji=1 ji=1 ji=1
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Using (12), (13) and (11) we get

1 4
1>21-50—40+= sl
21-=l
SO
4
Z r;ll < 186.
i=1
14 4 4 _ 4
Let H= Y hym=h+ ) h¥*+ ) h;+ ) r;. We have
n=1 i=1 i=1 j=1
4 4 _ 4 1|
(14) |H—4) = ”h+ Y R rhtt+ Y B+ Y rj—hf*——#
i=1 i=1 ji=1 2
1 4 _ 4 1 4 _
= “h+h*——+ Y hi+ Y r—hE < H—+ > h
2 i=1 =1 2 5

4
+|| X r[+IRE < S +185 116 = %+295.
j=1

Finally (14) and (9) give
lho— 1721l < [H—=1/2]| + [lho — H|| < 1/2+4300.
Since 0 was an arbitrary positive number we obtain the required resuit. To

prove the Theorem we will apply the method of B. M. Kadec, introduced in [3]
and developed in [4].

LEMMA 2 (see [3], in general form in [4]). Every infinite dimensional Banach
space X contains a basic sequence (e )i=, such that

N N N
Veor, h€R (X ) <|| X el < (12+10gN)( 3 14122
k=1 k=1 k=1

Proof—see [3].
Now in L,(Q) we find an orthogonal system (s,);=; such that

(15) Y, h,, hymespan{s,,..., s,,}
and s, = h, = 1. For Y= span(e,);>; we define T: Y—span{s,,..., S...} by

the formula T( Y te) = Y ;5.
k=1 k=1
It follows from Lemma 2 that T is continuous and injective. By virtue of

(15) y, = T~ '(h,) exists, and
N N

Z Vs Z .Vn(k)espan{ela-'-a ez[v}
k=1 k=1
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hence
N N
| 2wl < @2+10g2N)||T( X willl:
k=1 k=1
N
< (12+10g2N) || 3 Ay, < Co(12+10g2N)N 18,
k=1
Analogously
N
IS ye—yill < Co(12+log2N)N~ /6.
k=1
Thus

Z y"=0, Z yn(n)=y1 =el'
n=1

n=1

If ) YV, =y for some permutation ¢ then T( ¥ y,w) = T(y). However

n—l n=1
T( Z Vom) = Z hsw, hence T(y) =0 or T(y) = L. Since T is injective y = 0

or y =e,. So the sequence (y,).=; satisfies all conditions of the Theorem.
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M. N. Kageu, K. Bo3pHsakoBCKuH, O cepusix, NepecTaHOBKH KOTOPHIX 00JaJal0T JAMmb ABYMA
CYMMaMH

Ilemw sTolt paGoThl — aokazaTh, 4TO B moGOM GaHAXOBOM NPOCTPAHCTBE HeCkOHEuHOI
Pa3MEPHOCTH CYLICCTBYET NOCIECAOBATENBHOCTb (X,) Takas, 4TO:

card{xeX: pyon, X = )Xo} =2

rae m — MNEPECTAHOBKA MHOXECTBA HATYPAJIbHBIX YHCEII.




