

FUNCTIONAL ANALYSIS

On Series Whose Permutations Have Only Two Sums

by

Mikhail I. KADEC and Krzysztof WOŹNIAKOWSKI

Presented by A. PEŁCZYŃSKI on April 22, 1988

Summary. The purpose of this work is to show that in every infinite dimensional Banach space X there exists a sequence (x_n) , $x_n \in X$, such that $\operatorname{card}\{x \in X : \exists_{\pi:N \to N}, x = \sum x_{\pi(n)}\} = 2$, where π is a permutation of set of integers.

Introduction. Let $\sum x_n$ be a convergent series in a Banach space X, such that $\sum ||x_n|| = \infty$. Let us denote by $OC(x_n)$ the set

$$\{x \in X : \exists_{\pi:N \to N}, x = \sum x_{\pi(n)}\},\$$

where π is the permutation of the set of integers. At the beginning of this century P. Levy [1] and E. Steinitz [2] have shown that if X is finite dimensional then $OC(x_n)$ is linear i. e. $OC(x_n) = v + H$ where $v \in X$ and H is a subspace of X. In "Scottish Book" S. Banach asked the question: "Does this theorem hold in any Banach space X?" The answer is "no" and J. Marcinkiewicz has given a simple counterexample [6]. Independently, the Russian mathematicians investigating convergence in Banach spaces have constructed another series, for which $OC(\cdot)$ is not linear. However, always the sets $OC(\cdot)$ were infinite, for example the algebraic groups. We want to show that nonlinear $OC(\cdot)$ can be as small as possible, i.e. for some sequence (x_n) card $(OC(x_n)) = 2$.

First, we establish the notation. By $L_p(Q)$ we will denote $L_p(Q, \mathfrak{B}, \lambda)$ where $Q = [0, 1]^{\omega}$, \mathfrak{B} is the σ -ring of Borel subsets of Q and λ —the standard probability measure on \mathfrak{B} . Measurable function on Q, which equals $c(c \in \mathbb{R})$ will be denoted by c. The greek letters π , σ will always denote permutations of the set of natural numbers. Now we can formulate our main technical result:

Proposition. There exists a sequence $(h_n)_{n=1}^{\infty}$, $h_n \in L_{\infty}(Q)$ such that

(i)
$$\sum_{n=1}^{\infty} h_n = 0$$
 in $L_p(Q)$ $1 \le p < \infty$ and $\|\sum_{n=1}^{N} h_n\|_p \le C_0 N^{-1/3p}$

2 - Bull. Ac. Pol.: Math.

(ii) there exists a permutation π such that

$$\sum_{n=1}^{\infty} h_{\pi(n)} = 1 \quad \text{in } L_p(Q) \ 1 \leqslant p < \infty \quad \text{and } \| \sum_{n=1}^{N} h_{\pi(n)} - 1 \|_p \leqslant C_1 N^{-1/3p}$$

(iii) if $h_0 \in L_p(Q)$ and $h_0 = \sum_{n=1}^{\infty} h_{\sigma(n)}$ for some permutation σ then $h_0 = 0$ or $h_0 = 1$.

THEOREM. In every infinite dimensional Banach space X there exists a sequence $(x_n)_{n=1}^{\infty}$, $x_n \in X$ such that

$$\sum_{n=1}^{\infty} x_n = y_0$$

(ii) there exists a permutation π such that

$$\sum_{n=1}^{\infty} x_{\pi(n)} = y_1 \text{ and } y_1 \neq y_0$$

(iii) if there exists a permutation σ such that

$$\sum_{n=1}^{\infty} x_{\sigma(n)} = y \text{ then } y = y_0 \text{ or } y = y_1.$$

Proof of the Proposition. First we define functions, that form the sequence $(h_n)_{n=1}^{\infty}$. Let

(1)
$$f_m^n(t) = f_m^n(t_1, t_2, t_3, ...) = \begin{cases} 1 & \text{for } \frac{m-1}{n} < t_n < \frac{m}{n} \\ 0 & \text{otherwise} \end{cases}$$

for
$$n \in \mathbb{N}, m \in \{1, ..., n\},\$$

(2)
$$g_{m,j}^n = -f_m^n f_j^{n+1}$$
 for $n \in \mathbb{N}$, $m \in \{1, ..., n\}$, $j \in \{1, ..., n+1\}$.

The equalities below are obvious:

(3)
$$\sum_{m=1}^{n} f_{m}^{n} = 1 = -\sum_{m=1}^{n} \sum_{j=1}^{n+1} g_{m,j}^{n}$$

(4)
$$f_m^n = -\sum_{j=1}^{n+1} g_{m,j}^n$$

(5)
$$f_j^{n+1} = -\sum_{m=1}^n g_{m,j}^n.$$

Let us consider two series:

$$f_{1}^{1}+g_{1,1}^{1}+g_{1,2}^{1}+f_{1}^{2}+g_{1,1}^{2}+g_{1,2}^{2}+g_{1,3}^{2}+f_{2}^{2}+g_{2,1}^{2}+g_{2,2}^{2}+g_{2,3}^{2}...$$

$$f_{1}^{1}+f_{1}^{2}+g_{1,1}^{1}+f_{2}^{2}+g_{1,2}^{1}+f_{1}^{3}+g_{1,1}^{2}+g_{2,1}^{2}+f_{2}^{3}+g_{1,2}^{2}+g_{2,2}^{2}+f_{3}^{3}+g_{1,3}^{2}+g_{2,3}^{2}...$$

We write first series as $\sum_{n=1}^{\infty} h_n$. Then, the second can be written as $\sum_{n=1}^{\infty} h_{\pi(n)}$ for some permutation π .

Let us observe that if $h_N = f_m^n$ or $h_N = g_{m,j}^n$, then $n \sim N^{1/3}$ and if $h_{\pi(N)} = f_m^n$ or $h_{\pi(N)} = g_{m,j}^n$ then $n \sim N^{1/3}$.

From (4) we have

$$\sum_{n=1}^{N} h_n = f_m^n + \sum_{j=1}^{j(N)} g_{m,j}^n \quad \text{where } g_{m,j(N)}^n = h_N$$

or

$$\sum_{n=1}^{N} h_n = f_m^n \quad \text{if } f_m^n = h_N,$$

but

$$||f_m^n + \sum_{j=1}^{j(N)} g_{m,j}^n||_p \le ||f_m^n||_p = 1/n^{1/p} \sim N^{-1/3p}$$

This proves (i). Similarly, using (5) and the fact that $f_1^1 = 1$ we obtain (ii).

Proof of (iii): Since $L_p \subseteq L_1$ for any $p \ge 1$ it is sufficient to prove (iii) for p = 1. From now on $\|\cdot\|_1$ will be denoted $\|\cdot\|$.

First of all, let us observe that if $h_0 = \sum_{n=1}^{\infty} h_{\sigma(n)}$ in $L_1(Q)$, (4) and (5) (or simpler (3)) and definitions of f_m^n , $g_{m,j}^n$ imply that h does not depend on k-th coordinate for every $k \in \mathbb{N}$. In this case the Kolmogorov Zero-One Law [5] says that h_0 must be a constant function. Thus we can write

$$(6) h_0 = s, \ s \in N.$$

For the further proof we will need the following lemma:

LEMMA 1. Let (X, \mathfrak{X}, μ) and (Y, \mathfrak{Y}, ν) be probability measure spaces. Let $f, g: X \times Y \rightarrow \mathbf{R}$ be measurable and integrable functions such that

$$f(x, y) = \tilde{f}(x), \ g(x, y) = \tilde{g}(y)$$

then $||f+g|| \ge ||f|| + ||g|| [1 - 2(\mu \times \nu)(\text{supp}f)].$

Proof of Lemma 1. We have

$$\begin{split} \|f+g\| &= \int\limits_{YX} |f(x,y)+g(x,y)| \mu dxv dy = \int\limits_{YX} |\widetilde{f}(x)+\widetilde{g}(y)| \mu dxv dy \\ &= \int\limits_{Y} \Big[\int\limits_{X-\operatorname{supp}\widetilde{f}} |\widetilde{f}(x)+\widetilde{g}(y)| \mu dx + \int\limits_{\operatorname{supp}\widetilde{f}} |\widetilde{f}(x)+\widetilde{g}(y)| \mu dx \Big] v dy \\ &\geqslant \int\limits_{Y} \Big[\int\limits_{X-\operatorname{supp}\widetilde{f}} |\widetilde{g}(y)| \mu dx + \int\limits_{\operatorname{supp}\widetilde{f}} |\widetilde{f}(x)| - |\widetilde{g}(y)| \mu dx \Big] v dy \\ &= \int\limits_{Y} \Big[\|\widetilde{f}\|+\|\widetilde{g}(y)\| \left(1-2\mu(\operatorname{supp}\widetilde{f})\right)\right] v dy = \|\widetilde{f}\|+\|\widetilde{g}\| \left(1-2\mu(\operatorname{supp}\widetilde{f})\right). \end{split}$$

Obviously: $\mu(\operatorname{supp} \tilde{f}) = \mu \times \nu(\operatorname{supp} f)$, $\|\tilde{f}\|_1 = \|f\|_1$, $\|\tilde{g}\|_1 = \|g\|_1$, so the Lemma 1 is proved. Now we are able to prove that

$$\left\|h_0 - \frac{1}{2}\right\| \leqslant 1.$$

(From (6) it follows that this is equivalent to (iii)). If $h_0 = 1$ it holds. Otherwise (6) implies that $||h_0 - 1|| \ge 1$.

Let F_n , G_n , V_n be the following sets

$$F_{n} = \{ f_{m}^{n} : m = 1, ..., n \},$$

$$G_{n} = \{ g_{m,j}^{n} m = 1, ..., n; j = 1, ..., n + 1 \}$$

$$V_{n} = \bigcup_{k=1}^{n} F_{k} \cup G_{k}.$$

Given a positive number δ . We choose $K \in \mathbb{N}$ such that:

(8)
$$||h_0 - \sum_{n=1}^N h_{\sigma(n)}|| \le \delta for every N \ge K$$

and for every m > l > K

(9)
$$\left\|\sum_{n=1}^{m}h_{\sigma(n)}\right\| \leq \delta$$

$$\sum_{n=1}^{K}h_{\sigma(n)} \text{ will be denoted by } h.$$

Let $M \in \mathbb{N}$ be any number such that

$$h_{\sigma(n)} \in V_M \cup F_{M+1}$$
 for $n \leq K$.

We define functions h_n^* , \overline{h}_n , h^*

$$h_n^* = \begin{cases} h_{\sigma(n)} & \text{if } h_{\sigma(n)} \in V_M \cup F_{M+1} \text{ and } n > K \\ 0 & \text{otherwise} \end{cases}$$

$$h_n = \begin{cases}
h_{\sigma(n)} & \text{if } h_{\sigma(n)} \in G_{M+1} \\
0 & \text{otherwise}
\end{cases}$$

$$h^* = \sum_{n=K+1}^{\infty} h_n^*.$$

From (3) it follows that $h+h^*=1$. Thus we have

(10)
$$||h^*|| = ||h-1|| \ge ||h_0-1|| - ||h_0-h|| \ge 1 - \delta.$$

Let $l_0 = K$ and

(11)
$$l_{j+1} = \min \left\{ l: \frac{1}{4} - \frac{5}{4} \delta \leqslant \left\| \sum_{n>l_j}^{l} h_n^* \right\| \leqslant \frac{1}{4} - \frac{\delta}{4} \right\} \quad j = 0, 1, 2, 3.$$

(9), (10) justify the above definitions - ((9) implies that $||h_{\sigma(n)}|| < \delta$, for n > K).

We define

$$h_{j+1}^{**} = \sum_{l_{j+1}}^{l_{j+1}} h_n^* \qquad j = 0, 1, 2, 3$$

$$\bar{h}_{j+1} = \sum_{l_{j+1}}^{l_{j+1}} \bar{h}_n \qquad j = 0, 1, 2, 3$$

$$\hat{h}_{j+1} = \sum_{l_{j+1}}^{l_{j+1}} h_{\sigma(n)} \qquad j = 0, 1, 2, 3$$

$$r_j = \hat{h}_j - h_j^{**} - \bar{h}_j \qquad j = 1, 2, 3, 4$$

$$h_5^{**} = \sum_{l_4+1}^{\infty} h_n^{**}.$$

Let us remark that r_j , j = 1, 2, 3, 4 is a sum of all $h_{\sigma(n)}$ satisfying conditions:

a)
$$l_j \geqslant n > l_{j-1}$$
, b) $h_{\sigma(n)} \notin V_M \cup F_{M+1} \cup G_{M+1}$.

Applying Lemma 1 to h_j^{**} and r_j (they depend on different coordinates!) we obtain:

(12)
$$||h_j^{**} + r_j|| \ge ||h_j^{**}|| + \frac{||r_j||}{2} j = 1, 2, 3, 4$$

since h_j^{**} is an integer valued function, condition $||h_j^{**}|| \le \frac{1}{4}$ implies $\lambda(\sup h_j^{**})$ $\leq \frac{1}{4}$. On the other hand, from (9) we have

$$\|\hat{h}_j\| \leqslant \delta$$

so the triangle inequality gives

$$\|\overline{h}_{j}\| \ge \|h_{j}^{**} + r_{j}\| - \delta \ge \|h_{j}^{**}\| - \delta \ge \frac{1}{4} - \frac{9}{4}\delta.$$

Let us assume that $||h_5^{**}|| > 11\delta$. In this case we find l_5 such that for

$$\hat{h}_{5}^{**} = \sum_{l_4+1}^{l_5} h_n^*$$
 we have $10\delta < \|\hat{h}_{5}^{**}\| \le 11\delta$.

We put $\overline{h}_5 = \sum_{i=1}^{15} \overline{h}_n$ and similarly as above prove that $\|\overline{h}_5\| \ge \|\widehat{h}_5^{**}\| - \delta > 9\delta$.

However, $1 \ge \sum_{j=1}^{\infty} \|\overline{h}_j\| \ge \sum_{j=1}^{5} \|\overline{h}_j\| > 1 - 9\delta + 9\delta = 1$, which is a contradiction. Thus $\|h_5^{**}\| \le 11\delta$. We have

$$1 \geqslant \sum_{j=1}^{4} \|\bar{h}_{j}\| = \sum_{j=1}^{4} \|\hat{h}_{j} - h_{j}^{**} - r_{j}\| \geqslant \sum_{j=1}^{4} \|h_{j}^{**} + r_{j}\| - \sum_{j=1}^{4} \|\hat{h}_{j}\|.$$

Using (12), (13) and (11) we get

$$1 \ge 1 - 5\delta - 4\delta + \frac{1}{2} \sum_{j=1}^{4} ||r_j||,$$

SO

$$\sum_{j=1}^4 \|r_j\| \leqslant 18\delta.$$

Let
$$H = \sum_{n=1}^{l_4} h_{\sigma(n)} = h + \sum_{j=1}^4 h_j^{**} + \sum_{j=1}^4 \overline{h}_j + \sum_{j=1}^4 r_j$$
. We have

Finally (14) and (9) give

$$||h_0 - 1/2|| \le ||H - 1/2|| + ||h_0 - H|| \le 1/2 + 30\delta.$$

Since δ was an arbitrary positive number we obtain the required result. To prove the Theorem we will apply the method of B. M. Kadec, introduced in [3] and developed in [4].

LEMMA 2 (see [3], in general form in [4]). Every infinite dimensional Banach space X contains a basic sequence $(e_k)_{k=1}^{\infty}$ such that

$$\forall_{(t_k)_{k=1}^{\infty}} \ t_k \in \mathbf{R} \qquad \left(\sum_{k=1}^{N} |t_k|^2\right)^{\frac{1}{2}} \leqslant \left\|\sum_{k=1}^{N} t_k e_k\right\| \leqslant (12 + \log N) \left(\sum_{k=1}^{N} |t_k|^2\right)^{\frac{1}{2}}.$$

Proof-see [3].

Now in $L_2(Q)$ we find an orthogonal system $(s_k)_{k=1}^{\infty}$ such that

(15)
$$\forall_{n} h_{n}, h_{\pi(n)} \in \operatorname{span} \{s_{1}, \ldots, s_{2n}\}$$

and $s_1 = h_1 = 1$. For $Y = \operatorname{span}(e_k)_{k=1}^{\infty}$ we define $T: Y \to \operatorname{span}\{\overline{s_1, \ldots, s_k \ldots}\}$ by the formula $T(\sum_{k=1}^{\infty} t_k e_k) = \sum_{k=1}^{\infty} t_k s_k$.

It follows from Lemma 2 that T is continuous and injective. By virtue of (15) $y_n = T^{-1}(h_n)$ exists, and

$$\sum_{k=1}^{N} y_k, \sum_{k=1}^{N} y_{\pi(k)} \in \text{span}\{e_1, \dots, e_{2N}\}$$

hence

$$\left\| \sum_{k=1}^{N} y_{k} \right\| \leq (12 + \log 2N) \|T(\sum_{k=1}^{N} y_{k})\|_{2}$$

$$\leq (12 + \log 2N) \left\| \sum_{k=1}^{N} h_k \right\|_2 \leq C_0 (12 + \log 2N) N^{-1/6}.$$

Analogously

$$\left\| \sum_{k=1}^{N} y_k - y_1 \right\| \le C_1 (12 + \log 2N) N^{-1/6}.$$

Thus

$$\sum_{n=1}^{\infty} y_n = 0, \ \sum_{n=1}^{\infty} y_{\pi(n)} = y_1 = e_1.$$

If $\sum_{n=1}^{\infty} y_{\sigma(n)} = y$ for some permutation σ then $T(\sum_{n=1}^{\infty} y_{\sigma(n)}) = T(y)$. However $T(\sum_{n=1}^{\infty} y_{\sigma(n)}) = \sum_{n=1}^{\infty} h_{\sigma(n)}$, hence T(y) = 0 or T(y) = 1. Since T is injective y = 0 or $y = e_1$. So the sequence $(y_n)_{n=1}^{\infty}$ satisfies all conditions of the Theorem.

ROSTOVSKY INSTITUTE OF ENGINEERING AND CONSTRUCTION, USSR (M.I.K.)
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, ŚNIADECKICH 8, 00–656 WARSZAWA
K. W)
(INSTYTUT MATEMATYCZNY PAN)

REFERENCES

- [1] P. Levy, Sur les séries semi-convergents, Nouv. Ann. Math., 5 (1905), 506-511.
- [2] E. Steinitz, Bedingt konvergente Reihen und convexe Systeme, J. Reine Angew. Math., 143 (1913), 128-175, 144 (1913), 1-49.
- [3] V. M. Kadec, Ob odnoy zadache S. Banacha (problema 106 iz "Shotlandskoy knigi"), Funkcion. Anal. Prilozh., 20 (1986), 74-75.
 - [4] V. M. Kadec, Teorema Steinitza i B-vypuklost', Izv. V.U.Z. Matem., 295 (1986), 32-34.
 - [5] P. Billingsley, Probability and Measure, John Wiley and Sons, New York, 1979.
 - [6] R. D. Mauldin (ed), The Scottish Book, Birkhäuser, Boston, 1981.

М. И. Кадец, К. Возьняковский, О сериях, перестановки которых обладают лишь двумя суммами

Цель этой работы — доказать, что в любом банаховом пространстве бесконечной размерности существует последовательность (x_n) такая, что:

$$\operatorname{card}\left\{x \in X \colon \exists_{\pi:N \to N}, \ x = \sum x_{\pi(n)}\right\} = 2$$

где π — перестановка множества натуральных чисел.