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ON TOPOLOGICAL CLASSIFICATION OF
NON-SEPARABLE BANACH SPACES

C. BESSAGA AND M. 1. KADEC

The problem of topological classification of separable Banach spaces
has been completely solved; any such a space, if infinite-dimensional,
is homeomorphic to the Hilbert space IZ(NO) {17]. The problem, if every
(non-separable) Banach space is homeomorphic to a Hilbert space, is still
open. However in a few interesting cases (for instance for reflexive spaces
[5]) the affirmative answer has been established. This supports the con-
jecture that every Banach space is homeomorphic to a Hilbert space, ie.,
that the only topological invariant of Banach spaces is their density char-
acter.

Most of the facts on topological equivalence of Banach spaces have
been obtained by combining so-called “‘coordinate methods’’ and ‘‘decom-
position methods’’ with some result of linear character. These methods
have found also some applications in case of linear metric spaces which
are not Banach spaces: [4], [20], see also [6], [7].

The sections 1 and 2 are devoted to describing coordinate methods in
an ordinal number set-up (generalization of ‘“‘separable’’ coordinate methods:

(3], [13] — [16], [19], [20]) and to outlining their apolications. In section
3 we state main theorems of decomposition type and list the results which

can be obtained by help of these theorems.

Notation. The letters: q, B, v, 7, v denote ordinal numbers; the first

ordinal number of a cardinality ® will be also denoted by R. e, £t de-
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16 C. BESSAGA AND M. I. KADEC

note real numbers. X, y, 2 denote vectors. All the Banach spaces con-
sijdered here are over the real scalars. co(v) is the Banach space of all
x = {& 1, <, such that the set {a: 1€a] > g1 is finite for every € >0,
under the norm [[x}| = sxcltp 1€+ 1P(V), p > 1, is the space of all x =

{ga‘am/ such that the set {a: fa £ 0} is at most countable and |x]| =
(2, \gaﬁp)l/f’. In the sequel, the space 11(1/), denoted briefly 1{(v), is in
a sense a ‘‘test space’’; of course it could be replaced by the Hilbert
space 12(1/), because the latter space is homeomorphic to the first under
the map {£} - {falfaH, see also Theorem 1.

The symbol ¢ =’’ denotes the relation of being homeomorphic.

1. Bernstein maps: B-systems and co-B-systems
Let X be a Banach space, and let b be a 8-modular on X, i.e., a
continuous non-negative functional defined on X such that: lim b(xn) =0
n
iff lim x, =0 and b(ix) is non-increasing in t forevery x ¢ X, t>0.
n
A closed subspace L of X is called a b-éebyfs’ev subspace provided that
for any x in X there is the unique b-nearest point Px ¢ L, i.e., Px has
the property: z = Px iff ze L and b(x - 2) = inf{b(x—y): y ¢ L}
Any system <b, {La}aSV>, where b is a 8-modular on X and L, are
b-Cebyfev subspaces of X, will be called a generalized [co-] T-system
iff Ly = {01, L,= X,LB cL, for a> B, L, = UB<‘1LB+1 for a < v

dim(L,_, /Ly =1 for a < v[L; =X, LV=i0}, LBD L, for a > B, L,

) = 1L

a+l
= NgeoLgen dim(L /Ly q

An oriented generalized [co-] T-system

*) L ger g

is a generalized [co-] T-system together with a family of linear functionals
f, e LZ+1[fa € L:;] such that f (x) =0 iff x¢ La[x € La+11‘

Let P: X~ L, bethe b-nearest-point map and let da(x) = b(x—Pax),
€ (%) = sgn fa(Pax)[ e,a(x) = —sgn fa(Pa+1 x)]. The system (*) induces the
Bernstein map h: X~ 1(v), where hx = (da(x)—-da+1(x)) . Ea(x).
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An oriented generalized {co-] T-system will be called a generalized
[co-1 B-system, provided that h is a homeomorphism onto 1(1). Omitting
the adjective ‘‘generalized’’ will indicate that b(x) = [|x|, the norm of the
space.:|<

It follows directly from the definition of generalized [co-] B-systems,
that in order to establish a homeomorphism between a Banach space X and
a space 1(v) it suffices to find in X either a generalized B-system or a
generalized co-Besystem. To check if a given generalized [co-] T-system
is a generalized [co-] B-system is, in general, not difficult. For instance,
in the countable case (more precisely if v = RO) every oriented T-system
the Bernstein map of which is one-to-one, is a B-system (because all orien-

ted T-systems, with v = RO, have the property that h is continuous, onto

1(R ) and h~! preserves precompactness).

Example A. Let X be either co(u) or lp(v), p> 1. Let L,= HE e Xe
fa =0 for 7>al, L% = e e X: ‘fr = 0 for r<al, fa({§7§) = fa. Then:

D < AL S H > [<] - LIRS, §€,3>] is a [co-] B-system in each
lp(V).

2) There exists an equivalent norm |||« || in colv) such that
<il -l fL ), H 1> is a B-system in o) —Troyanski [24], cf. [13],
(10]. This norm can be defined by Day’s [11] formula: |[x]| = | x| +
% 2 1§pn|, where {fp } is the sequence of all non-zero coordi-

n
nates of x ordered in their non-increasing way.

Example B. Let X be a separable conjugate Banach space, X = Y*. Let
{yn} be a linearly independent sequence in Y such that x(y,) = 0 for all

n implies x = 0 and lli{m % (vy) = x(y,) for n=1,2,..., lli(m ||xk|| = ||x||
imply lli(m lx—x| = 0. Denote L" = {x; x(y;)=0 for i <nl, f (x) = x(y,,)-
Then <|-||, {L™, if,}> is a co-B-system. Using this argument it is pos-

sible to show that every separable conjugate Banach space admits general-

The term ‘“T-system'’ has been introduced by Klee and Long [20] (T for Tche-
bysheff). B-systems were called there ‘“T-systems with Bemstein property,”’
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ized co-B-systems, and therefore is homeomotphic to 1{X 0); see [15], [16],
{20].

By Example A we obviously have

THEOREM 1. The spaces colv) and 1p(v), p > 1, are homeomorphic.

2. B and co-B-systems related to projection bases
Let X be a Banach space with a projection basis {ST}. The symbols
R, €, fr will have the same meaning as in [5}. We shall consider two sys-

- a_
tems of subspaces of X,L = S, X and L%=R_ X.

Example C. X is either cyv) or lp(v). Sa{§7} = {£}, where

£ forr<a

0 forrza.

The subspaces L, and L& are now the same as in Example A.

A projection basis {Sal‘agv is said to be:‘

(a) orthogonal, iff L, and L% are norm-CebySev and S, R? are the
norm-nearest point maps onto L, and L%, respectively,

(b) boundedly complete, iff for any a; < a, < a3 < ... and for any se-

n
wence {x_}, with x_=(S, — S x_ the condition sup |2 _q Xl <=
g n n ay Ay 1 n np “ i=1 1u

implies the convergence of %,

(c) unconditional, iff there exists a o-additive projection-valued mea-
sure E(-) defined on the o-field of all subsets of the segment (1, v] such
that Ela: a<7 =S, forall r <v.

PrROPOSITION 1. If X has a projection basis, then it is possible to
renorm X in such a way that the basis becomes orthogonal. (Cf. [5, Propo-

sition 51.)
PROPOSITION 2. Every projection basis in a reflexive Banach space

is boundedly complete.

PROPOSITION 3. Any reflexive Banach space contains a (reflexive)
subspace of density character equal to that of the whole space, admitting

a projection basis: [51.
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THEOREM 2 If X has a boundedly complete orthogonal projection ba-
sis ISy}, f,, R, and L® are defined as above, and b(x) = ||x||2 +

2 WSy Xl =l xID IR, ;x|l, then <b,{L%, 3> is a generalized co-
B-system in X. Hence every Banach space with a boundedly complete

projective basis of type v is homeomorphic to 1(v), see [5].

REMARK 1. In the case where the space X is uniformly convex, the
above b(x) can be replaced by the norm of the space. S. Troyanski has
shown that also in the case of boundedly complete unconditional bases

one can use a norm in place of b(x).
Problem 1. Does every Banach space admit a generalized B-system?

Problem 2. Does every conjugate Banach space admit a generalized

co-B-system?

REMARK 2. If X is separable and there exist closed bounded convex
subsets of X without extreme points (for instance X = L0, 1)), then X

does not possess any co-B-system, see [8].

Problem 3. Let X be a Banach space with a projection basis {Sa}.
Does there exist a §-modular b such that <b,{La},{fa}>[<b, {L%, 1>

is a generalized [co-] B-system?

The problem is open even in the separable case; we have however:

THEOREM 3. [f {Sa ‘a<v is a projection basis in a Banach space X,

then there exist an equivalent norm ||| || and a & -modular b such that
<b,iLY%, {fa}> is a co-T* system the Bernstein map of which restricted
to the sphere tx ¢ X: ||| = 1} is a homeomorphism onto the unit sphere
of 1(v).

(Take the functional F(x) defined in [18] and set

1-F(x) for [Ix]| <1

b(x) =
" el for fixff > 1),

Problem 4. Let X be a Banach space with a basis {Sa}a<v'

there exist a new equivalent norm and a 8-modular b such that

Does
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<b, {La},{fab is a co-T.system and its Bernstein map restricted to the

new unit sphere of X is a homeomorphism onto the unit sphere of 1() ?

More general:

Problem 5. Let X be a Banach space. Does there exist in X an ori-
ented generalized [co-] T-system <b,{La!,{fa¥> such that U = {x: b(x)
<1} is bounded and convex and the Bernstein map restricted to dU is a
homeomotphism onto the unit sphere of 1(1) ?

The affirmative answer to this problem would imply X = 1().

3. Decomposition theorems; applications

Let X and Y be topological spaces. We shall write Y| X provided
that there exists a space W such that X = Yx W.

The next two theorems concern Fréchet spaces (i.e., locally convex
complete linear metric spaces) and in particular are valid for Banach

spaces:

THEOREM 4. Let X and Y be Fréchet spaces. If either Y is a sub-

space of X or there is a continuous linear map T: X —t——> Y, then Y| X.
onto

This is an easy corollary from Michael’s Fréchet space version of
Bartle-Graves result, see [22] and [2].

THEOREM 5. Let X be a Fréchet space of density character R. If
1(R)| X then X = 1(R) [6, Th. 8.2].

COROLLARY 1 (1(&)&0 =~ 1(R).
From Propositions 3, 1, 2 and Theorems 2, 4, 5 it follows:

THEOREM 6. Every reflexive Banach space is homeomorphic to a

space 1(v), see [5].

COROLLARY 2. If X is a Banach space of density character X such
that either X or X* contains a reflexive subspace of density character N,
then X = 1(R) ([6], 9.3. xix).
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The next theorem summarizes the known results on topological equiva-
lence of spaces C(Q), of all continuous functions on the compact space Q,

under the sup-norm:

THEOREM 7. Let Q be a compact Hausdorff space. Each of the con-
ditions (1)-( 4) listed below is sufficient in order that C(Q) be homeomor-
phic with a space 1(v):

(1) Q is the one-point compactification of a discrete space,

(2) Q is the Stone-Cech compactification of a discrete space,

(3) Q is a topological group,

(49) Q contains a closed subset D such that C(D) = 1(R), where R

is the density character of the space C(Q).

REMARK 3. The condition (3) can be replaced by a weaker one:
(3”) Q admits a countable sequence of Baire measures such that
the measure algebras B(u,, Q) are homogeneous in the sense of
Maharam [21] and the supremum of density characters of these
algebras is equal to the density character of the space C(Q).
The sufficiency of (1) follows from the Troyanski’s result—Theorem 1
of this paper. The other condition has been established by Pefczynski
[23], see also [6].

Problem 6. Let X be a C(Q) space with density character & > Roe
Must X be homeomorphic to the space 1(R)?

THEOREM 8. Every abstract L -space is homeomorphic to a space
1) (6], 9.3 xx).

The above facts seem to suggest that the solution of the general clas-
sification problem of (non-separable) Banach spaces can be perhaps achiev-
ed by studying:

1) geometrical properties of Banach spaces connected with the exis-
tence of “‘nice’’ norms and & modulars and ‘‘nice’’ generalized [co-] T-

systems,
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2) some jsomorphic properties of Banach spaces, mainly the structure

of subspaces and linear images of a given space.

We may expect also that the investigation of structural propetties of

Fréchet spaces will allow to reduce the classification problem of Fréchet

spaces to that of Banach spaces. (In the separable case this was possi-

ble thanks to Anderson’s theorem 1l l(&o) ~ g, the countable product

of lines, Eidelheit’s result [12] stating that every non-normable Fréchet

space can be linearly mapped onto &, and Theorem 4.5.)

Y]

{2]

(3l

[4]

{5

(6}

(7]

(8}
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