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Let E; and E, be isomorphic Banach spaces. Let us consider a quantity

d(Ey, Ep) = int |[T- [T,
T

where T runs over all isomorphisms Ej onto E,. Banach and Mazur introduced
a quantity In d(Ey, E;) (see [1]) which is the metric in any set of Banach spaces
isomorphic in pairs with identified almost isometric spaces.*)

In this note we announce an estimation for d(Ej, E,), where Ej, E, are some
Minkowski spaces (i.e. finite dimension Banach spaces), in particular the
spaces /3.**) We apply the obtained results to estimation of the projection con=

stants ***) of Minkowski spaces. For results in this direction see [2], [3].
TreoreM 1. If 1 < p; € o0, 1 € pp < oo, sign (2 — py) = sign (2 — py) then

1 1

d(ly,Ip)=n" 7,

THEOREM 2. If 1 < py £ 2 < py < oo then for any n=1,2, ... the following
inequality takes place

2-2: i_‘ P1m2 11 1_1 1_1
max{Z P2 g1 2 ) P op? ”2} <d(y.1p) < max{C%,, n?t %, Cp 0’ ”'}.
where l 1 for n=2% k=0,12..,

Cp,n = 2=2|

l (H—l/f)_”— for all remaining n.

*) Banach spaces E; and E; are said to be almost isometric, if 4(E, E2) = 0 [1].
**) l" (1 < p < o) (resp. I = C») is the space of sets cons1stmg of n real numbers {e& i)

with vector operations defined in a natural way and with the norm || {&}2_ || = ( 2 |§slp)p (resp.
I{& % |~ max IE;!)
*k¥) PrOJecuon constant of Banach space P is a quauatity A (P) = sup 4 (P, B), where B runs
, B
over all Banach spaces containing P as subspace, and A (P, B) = int || 4], where 4 runs over all
4

projects from B onto P,
[719]
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For any Banach spaces E; and E it is easy to establish the inequality ([2]):
1) A(E1) < A(E2) d(E1, Ey).
From (1) and from Theorems 1—2 follows

THEOREM 3. If 2 € p < oo then
1

AiH <P,
If 1 < p <2 then
AU2) < Cpny/m,
where Cp, n has the same value as in Theorem 2.
Remark. B. Griinbaum [3] found the exact value of A (/):

1) AU =2-nC,y_y 222,
DerFINITION 1. Let {¢;}]"; be a basis *) in Minkowski space B, dim B = n. The
quantity "
‘2 &1 A; &
ey = swp ]
{orly_y» ei=t1, 1;2 a e‘i

li=1
is said to be the coordinate asymmetry of {e;}*_,. The quantit
Y 15i=1 q Y

w
Sae
=1

T 7 T
2 a; €4
=1

where {e}f.; denotes a permutation of {e;}},, is said to be the diagonal asym-
metry of {eg}y—_,. The quantity a({e;}}-,) = » ({es}f,) 6 ({e}f-,) is said to be
the asymmetry of {e;}i.,.

d({eh=) = _ sup

fanl]_ 1, €} 3,

DEFINITION 2. Let £ be the set of all bases in Minkowski space B. We shall
call coordinate asymmetry (resp. diagonal asymmetry; asymmetry) of B the quantity

x(B)Y= inf . x({es}f)),
e (€8
respectively )
6(B)= inf o({efi=y), a(B)= inf a({ey).
{eif1 €8 {e0f. <3l

We shall call the space B coordinate symmetrical (resp. diagonal symmetrical,
symmetrical) if »(B) =1, (tesp. (B) =1, a(B) = 1).

It is easy to show that in the given definitions we may instead of “sup™ and “inf”
write “max” and “min”, respectively.

*) We regard all bases considered here as normalized, i.e. e =1, i=1,2,...,a
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THEOREM 4. Let B be an n-dimensional Minkowski space and let for certain basis
{e}i, in B:
x(ed) =% O({e}-) =29
Then the following inequality
3) d(B, ¢ d(B,I}) < }x(x+1)on
is true.-The constant % in (3) is exact.

COROLLARY 1. If B is an n-dimensional symmetrical Minkowski space then the
Jollowing inequality takes place:
d(B,c")d(B,I]) < n.

THEOREM 5. Let for a certain basis {e;};-, in n-dimensional Minkowski space B:
% ({e}in) = “,.‘5 ({eidiz) = 0.

Then
#(e+1) dnd (T, c?
d(B,cn)q/( )2 U em

COROLLARY 2. If B is an n-dimensional symmetrical Minkowski space, then
d(B, ¢®) < Vnd (I?, c™).
From this Corollary and from Theorem 2 follows

COROLLARY 3. If B is an n-dimensional symmetrical Minkowski space, then
AB)<dB, e < Dpn?, n=12,..,
where

1 for n=2% k=0,12,..
" vV 1——5——]/_5 Jor all remaining n.

Remark. For an arbitrary n-dimensional Minkowski space B the inequality
d(B,c") < n
is well-known; it follows from John’s inequality [4]
d(B, 1) < y/n.
THEOREM 6. Let for certain basis {e:};, in n-dimensional Minkowski space B:

x({edi) =%, O ({ehil) = o

B < ]/ @Jrl)z dnd ().

From (2) and from Theorem 6 follows

Then
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CoROLLARY 4. If B is an n-dimensional symmetrical Minkowski space, then

1—n
i(B) <2 2 nl/C,,_,_“z_—z.
ProBLEMS. Does a sequence of Minkowski space {Bn}q.;, dimBy=n,n=1,2, ...
<xist, such that

lim #(Bp) = 00?, lim 6(By) = o0?, lim a(Bp) = oo

700 n—->00 N0
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